Skip to main content
Log in

Enhanced magnetoresistance in hydrogen- and fluorine-passivated zigzag aluminium nitride nano-ribbon

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Using density functional theory, we predict junctionless magnetoresistive device (JMD) using edge-passivated zigzag aluminium nitride nano-ribbon (ZAlNNR) for application in magnetoresistive random access memories (MRAMs). The results suggest that the conductivity of ZAlNNR can be modulated by passivating the nano-ribbon edges with hydrogen (H) and fluorine (F) atoms. A semiconducting ZAlNNR results when aluminium (Al) and nitrogen (N) atoms on both the edges of ZAlNNR are passivated by hydrogen or fluorine. A half-metallic nano-ribbon results when the edge consisting of aluminium atoms is passivated by hydrogen or fluorine, whereas a metallic nano-ribbon results when the edge consisting of nitrogen atoms is passivated by hydrogen or fluorine. A junctionless ZAlNNR JMD can thus be formed by selectively passivating the electrodes (half-metallic) and central region (semiconducting). The fluorine-passivated junctionless device offers higher magneto-resistance (MR) and better spin-filtering effect in comparison with hydrogen-passivated device. Smaller device fabrication complexity can also be expected due to a junctionless structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Wang, Y. Zhu, W. Ren, J. Wang, H. Guo, Spin-dependent transport in Fe-doped carbon nanotubes. Phys. Rev. B 75(23), 235415 (2007)

    Article  ADS  Google Scholar 

  2. K.L. Yao, Y. Min, Z.L. Liu, H.G. Cheng, S.C. Zhu, S.C. Gao, First-principles study of transport of V doped boron nitride nanotube. Phys. Lett. A 372(34), 5609–5613 (2008)

    Article  ADS  Google Scholar 

  3. L. Lai, J. Lu, Half metallicity in BC2N nanoribbons: stability, electronic structures, and magnetism. Nanoscale 3(6), 2583–2588 (2011)

    Article  ADS  Google Scholar 

  4. X. Lin, J. Ni, Half-metallicity in graphene nanoribbons with topological line defects. Phys. Rev. B 84(7), 075461 (2011)

    Article  ADS  Google Scholar 

  5. Y. Liu, X. Wu, Y. Zhao, X.C. Zeng, J. Yang, Half-metallicity in hybrid graphene/boron nitride nanoribbons with dihydrogenated edges. J. Phys. Chem. C 115(19), 9442–9450 (2011)

    Article  Google Scholar 

  6. C. León, A. Latgé, Half-metallicity study of graphene nanoribbon bilayers under external fields. Phys. Rev. B 88(24), 245446 (2013)

    Article  ADS  Google Scholar 

  7. Y. Lin, J.W. Connell, Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 4(22), 6908–6939 (2012)

    Article  ADS  Google Scholar 

  8. X. Li, X. Wu, J. Yang, J. Am. Chem. Soc. 136(15), 5664–5669 (2014)

    Article  Google Scholar 

  9. R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, new class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50(25), 2024 (1983)

    Article  ADS  Google Scholar 

  10. V. Alijani, J. Winterlik, G.H. Fecher, S.S. Naghavi, C. Felser, Quaternary half-metallic Heusler ferromagnets for spintronics applications. Phys. Rev. B 83(18), 184428 (2001)

    Article  ADS  Google Scholar 

  11. K.I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature 395, 677–680 (1998)

    Article  ADS  Google Scholar 

  12. K.I. Kobayashi, T. Kimura, Y. Tomioka, H. Sawada, K. Terakura, Y. Tokura, Intergrain tunneling magnetoresistance in polycrystals of the ordered double perovskite Sr2FeReO6. Phys. Rev. B 59(17), 11159 (1999)

    Article  ADS  Google Scholar 

  13. I. Galanakis, P. Mavropoulos, Zinc-blende compounds of transition elements with N, P, As, Sb, S, Se, and Te as half-metallic systems. Phys. Rev. B 67(10), 104417 (2003)

    Article  ADS  Google Scholar 

  14. W.H. Xie, Y.Q. Xu, B.G. Liu, D.G. Pettifor, Half-metallic ferromagnetism and structural stability of zincblende phases of the transition-metal chalcogenides. Phys. Rev. Lett. 91(3), 037204 (2003)

    Article  ADS  Google Scholar 

  15. B.G. Liu, Half-metallic ferromagnetism and stability of transition metal pnictides and chalcogenides, in Half-Metallic Alloys, vol. 676, Lecture Notes in Physics, ed. by I. Galanakis, P. Dederichs (Springer, Berlin, 2005)

    Chapter  Google Scholar 

  16. M. Sato, H. Kikuchi, K. Kobayashi, Effects of interface oxidization in ferromagnetic tunnel junctions. IEEE Trans. Magn. 35(5), 2946–2948 (1999)

    Article  ADS  Google Scholar 

  17. S. Ikeda, J. Hayakawa, Y.M. Lee, F. Matsukura, Y. Ohno, T. Hanyu, H. Ohno, Magnetic tunnel junctions for spintronic memories and beyond. IEEE Trans. Electron Devices 54(5), 991–1002 (2007)

    Article  ADS  Google Scholar 

  18. S. Maekawa, U. Gafvert, Electron tunneling between ferromagnetic films. IEEE Trans. Magn. 18(2), 707–708 (1982)

    Article  ADS  Google Scholar 

  19. J. Nowak, J. Rauluszkiewicz, Spin dependent electron tunneling between ferromagnetic films. J. Magn. Magn. Mater. 109(1), 79–90 (1992)

    Article  ADS  Google Scholar 

  20. E. Cobas, A.L. Friedman, O.M.J. Erve, O.M.J. van’t Robinson, B.T. Jonker, Graphene based magnetic tunnel junctions. IEEE Trans. Magn. 49(7), 4343–4346 (2013)

    Article  ADS  Google Scholar 

  21. W. Li, L. Xue, H.D. Abruna, D.C. Ralph, Magnetic tunnel junctions with single-layer-graphene tunnel barriers. Phys. Rev. B 89(18), 184418 (2014)

    Article  ADS  Google Scholar 

  22. T. Zijlstra, C.F.J. Lodewijk, N. Vercruyssen, F.D. Tichelaar, D.N. Loudkov, T.M. Klapwijk, Epitaxial aluminum nitride tunnel barriers grown by nitridation with a plasma source. Appl. Phys. Lett. 91, 233102 (2007)

    Article  ADS  Google Scholar 

  23. M. Piquemal-Banci, R. Galceran, M.-B. Martin, F. Godel, A. Anane, F. Petroff, B. Dlubak, P. Seneor, 2D-MTJs: introducing 2D materials in magnetic tunnel junctions. J. Phys. D Appl. Phys. 50(20), 203002 (2017)

    Article  ADS  Google Scholar 

  24. M. Wu, X. Wu, Y. Pei, X.C. Zeng, Inorganic nanoribbons with unpassivated zigzag edges: half metallicity and edge reconstruction. Nano Res. 4(2), 233–239 (2011)

    Article  Google Scholar 

  25. Atomistix Toolkit version 2014, Synopsys QuantumWise A/S (www.quantumwise.com)

  26. J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23(10), 5048 (1981)

    Article  ADS  Google Scholar 

  27. J. Zhao, A. Buldum, J. Han, J.P. Lu, Gas molecule adsorption in carbon nanotubes and nanotube bundles. Nanotechnology 13(2), 195 (2002)

    Article  ADS  Google Scholar 

  28. H.M. Rai, S.K. Saxena, V. Mishra, R. Late, R. Kumar, P.R. Sagdeo, N.K. Jaiswal, P. Srivastava, Half-metallicity in armchair boron nitride nanoribbons: a first-principles study. Solid State Commun. 212, 19–24 (2015)

    Article  ADS  Google Scholar 

  29. S. Choudhary, P. Mishra, R. Goyal, First-principles study of spin transport in BN doped CrO2–graphene–CrO2 magnetic tunnel junction. Phy. Lett. A 380(9–10), 1098–1101 (2016)

    Article  ADS  Google Scholar 

  30. S. Meena, S. Choudhary, Tuning the tunneling magnetoresistance by using fluorinated graphene in graphene based magnetic junctions. AIP Adv. 7(12), 125008 (2017)

    Article  ADS  Google Scholar 

  31. A. Kumar, S. Choudhary, Enhanced magnetoresistance in in-plane monolayer MoS2 with CrO2 electrodes. J. Supercond. Nov. Magn 31(10), 1–6 (2018)

    Article  Google Scholar 

  32. M. Chakraverty, H.M. Kittur, P. Arun Kumar, First principle simulations of various magnetic tunnel junctions for applications in magnetoresistive random access memories. IEEE Trans. Nanotechnol. 12(6), 971–977 (2013)

    Article  ADS  Google Scholar 

  33. S. Choudhary, S. Qureshi, Theoretical study on transport properties of a BN co-doped SiC nanotube. Phys. Lett. A 375(38), 3382–3385 (2011)

    Article  ADS  Google Scholar 

  34. S. Choudhary, S. Qureshi, Theoretical study on the effect of vacancy defect reconstruction on electron transport in Si-C nanotubes. Mod. Phys. Lett. B 25(28), 2159–2170 (2011)

    Article  ADS  Google Scholar 

  35. S. Choudhary, S. Qureshi, Effect of moisture on electron transport in SiC nanotubes: an ab initio study. Phys. Lett. A 376(45), 3359–3362 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhanshu Choudhary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, S., Kumar, M. Enhanced magnetoresistance in hydrogen- and fluorine-passivated zigzag aluminium nitride nano-ribbon. Eur. Phys. J. Plus 135, 926 (2020). https://doi.org/10.1140/epjp/s13360-020-00945-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00945-0

Navigation