Skip to main content
Log in

First-Principles Investigations of N-Vacancy Induced Zigzag Boron Nitride Nanoribbons for Nanoscale Resonant Tunneling Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The structural, electronic, and transport properties of zigzag boron nitride nanoribbons (ZBNNRs) with nitrogen-vacancy (N-vacancy) at the center (N-V@C), at the edge (N-V@E), and at the center as well as edge (N-V@CE) are investigated. This work deploys density functional theory (DFT) along with non-equilibrium Green's function (NEGF) formalism. Present DFT-based calculations reveal that a metallic/semiconducting nature can be obtained in N-vacancy ZBNNRs via selective H-passivation. The most structurally stable structure in N-vacancy ZBNNRs is observed for HBN-NV\(_{E}\) irrespective of ribbon width. The current–voltage characteristics of pristine, bare, and N-vacancy ZBNNRs devices demonstrated that the bare ZBNNRs exhibit maximum current as compared to the N-vacancy ZBNNRs device under low bias. This is because the vacancy defect breaks the edge states and produces some localized defect-induced states, which suppress the electron transmission and reduces current to get a better \(I_{\mathrm{P}}/I_{\mathrm{V}}\) (peak to valley current ratio PVCR) ratio. It is worth mentioning here that even negative differential resistance (NDR) with a sufficiently high \(I_{\mathrm{P}}/I_{\mathrm{V}}\) ratio has also been observed for BNH-NV\(_{E}\) of the order of 10\(^{10}\) in both positive and negative biasing. The observed NDR effect suggests that selective H-passivation in N-vacancy ZBNNRs has immense potential applications for nanoscale NDR devices.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Zeng, C. Zhi, Z. Zhang, X. Wei, X. Wang, W. Guo, Y. Bando, and D. Golberg, Nano Lett. 10, 5049 (2010)

    Article  CAS  Google Scholar 

  2. D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, and C. Zhi, ACS Nano 4, 2979 (2010)

    Article  CAS  Google Scholar 

  3. A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  CAS  Google Scholar 

  4. A.L. Gibb, N. Alem, J.H. Chen, K.J. Erickson, J. Ciston, A. Gautam, M. Linck, and A. Zettl, J. Am. Chem. Soc. 135, 6758 (2013)

    Article  CAS  Google Scholar 

  5. O. Cretu, Y.C. Lin, and K. Suenaga, Nano Lett. 14, 1064 (2014)

    Article  CAS  Google Scholar 

  6. S. Azevedo, J.R. Kaschny, C.M. de Castilho, and F. de Brito Mota, Nanotechnology 18, 495707 (2007)

    Article  CAS  Google Scholar 

  7. S. Azevedo, J. Kaschny, C. De Castilho, and F. de Brito Mota, Eur. Phys. J. B 67, 507 (2009)

    Article  CAS  Google Scholar 

  8. D. Pacile, J. Meyer, Ç. Girit, and A. Zettl, Appl. Phys. Lett. 92, 133107 (2008)

    Article  CAS  Google Scholar 

  9. W.Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, Appl. Phys. Lett. 93, 223103 (2008)

    Article  CAS  Google Scholar 

  10. C. Jin, F. Lin, K. Suenaga, and S. Iijima, Phys. Rev. Lett. 102, 195505 (2009)

    Article  CAS  Google Scholar 

  11. Y. Lin, T.V. Williams, and J.W. Connell, J. Phys. Chem. Lett. 1, 277 (2010)

    Article  CAS  Google Scholar 

  12. Y. Lin, T.V. Williams, T.B. Xu, W. Cao, H.E. Elsayed-Ali, and J.W. Connell, J. Phys. Chem. C 115, 2679 (2011)

    Article  CAS  Google Scholar 

  13. J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, and V. Nicolosi, Science 331, 568 (2011)

    Article  CAS  Google Scholar 

  14. L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, and P.M. Ajayan, Nano Lett. 10, 3209 (2010)

    Article  CAS  Google Scholar 

  15. Y. Shi, C. Hamsen, X. Jia, K.K. Kim, A. Reina, M. Hofmann, A.L. Hsu, K. Zhang, H. Li, Z.-Y. Juang, M.S. Dresselhaus, L.J. Li, and J. Kong, Nano Lett. 10, 4134 (2010)

    Article  CAS  Google Scholar 

  16. K.J. Erickson, A.L. Gibb, A. Sinitskii, M. Rousseas, N. Alem, J.M. Tour, and A.K. Zettl, Nano Lett. 11, 3221 (2011)

    Article  CAS  Google Scholar 

  17. X.-B. Wang, Q. Weng, X. Wang, X. Li, J. Zhang, F. Liu, X.-F. Jiang, H. Guo, N. Xu, D. Golberg, and Y. Bando, ACS Nano 8, 9081 (2014)

    Article  CAS  Google Scholar 

  18. F. Liu, X. Mo, H. Gan, T. Guo, X. Wang, B. Chen, J. Chen, S. Deng, N. Xu, T. Sekiguchi, D. Golberg, and Y. Bando, Sci. Rep. 4, 1 (2014)

    Google Scholar 

  19. Y. Liao, Z. Chen, J.W. Connell, C.C. Fay, C. Park, J.W. Kim, and Y. Lin, Adv. Funct. Mater. 24, 4497 (2014)

    Article  CAS  Google Scholar 

  20. C.H. Park and S.G. Louie, Nano Lett. 8, 2200 (2008)

    Article  CAS  Google Scholar 

  21. Z. Zhang and W. Guo, Phys. Rev. B 77, 075403 (2008)

    Article  CAS  Google Scholar 

  22. W. Chen, Y. Li, G. Yu, C.Z. Li, S.B. Zhang, Z. Zhou, and Z. Chen, J. Am. Chem. Soc. 132, 1699 (2010)

    Article  CAS  Google Scholar 

  23. X.J. Wu, M.H. Wu, and X.C. Zeng, Front. Phys. China 4, 367 (2009)

    Article  Google Scholar 

  24. A. Lopez Bezanilla, J. Huang, H. Terrones, and B.G. Sumpter, Nano Lett. 11, 3267 (2011)

    Article  CAS  Google Scholar 

  25. Q. Tang, Z. Zhou, and Z. Chen, J. Phys. Chem. C 115, 18531 (2011)

    Article  CAS  Google Scholar 

  26. F. Zheng, G. Zhou, Z. Liu, J. Wu, W. Duan, B.L. Gu, and S. Zhang, Phys. Rev. B 78, 205415 (2008)

    Article  CAS  Google Scholar 

  27. F.L. Zheng, Y. Zhang, J.M. Zhang, and K.W. Xu, J. Phys. Chem. Solids 72, 256 (2011)

    Article  CAS  Google Scholar 

  28. Y. Pan and Z. Yang, Phys. Rev. B 82, 195308 (2010)

    Article  CAS  Google Scholar 

  29. W. Chen, Y. Li, G. Yu, Z. Zhou, and Z. Chen, J. Chem. Theory Comput. 5, 3088 (2009)

    Article  CAS  Google Scholar 

  30. Y. Zhou, J. Zhang, C. Ye, X. Miao, and D. Zhang, J. Appl. Phys. 115, 114313 (2014)

    Article  CAS  Google Scholar 

  31. V. Barone and J.E. Peralta, Nano Lett. 8, 2210 (2008)

    Article  CAS  Google Scholar 

  32. Q. Tang, Z. Zhou, P. Shen and Z. Chen, Chem. Phys. Chem. 14, 1787 (2013)

    Article  CAS  Google Scholar 

  33. Q. Tang, J. Bao, Y. Li, Z. Zhou, and Z. Chen, Nanoscale 6, 8624 (2014)

    Article  CAS  Google Scholar 

  34. Z. Zhang, W. Guo, and B.I. Yakobson, Nanoscale 5, 6381 (2013)

    Article  CAS  Google Scholar 

  35. N. Alem, R. Erni, C. Kisielowski, M.D. Rossell, W. Gannett, and A. Zettl, Phys. Rev. B 80, 155425 (2009)

    Article  CAS  Google Scholar 

  36. J. Kotakoski, C.H. Jin, O. Lehtinen, K. Suenaga, and A. Krasheninnikov, Phys. Rev. B 82, 113404 (2010)

    Article  CAS  Google Scholar 

  37. M. Si and D. Xue, Phys. Rev. B 75, 193409 (2007)

    Article  CAS  Google Scholar 

  38. I. Jiménez, A. Jankowski, L. Terminello, D. Sutherland, J. Carlisle, G. Doll, W. Tong, D. Shuh, and F. Himpsel, Phys. Rev. B 55, 12025 (1997)

    Article  Google Scholar 

  39. I. Jiménez, A. Jankowski, L.J. Terminello, J.A. Carlisle, D. Sutherland, G. Doll, J. Mantese, W.M. Tong, D.K. Shuh, and F.J. Himpsel, Appl. Phys. Lett. 68, 2816 (1996)

    Article  Google Scholar 

  40. S. Tang and Z. Cao, Comput. Mater. Sci. 48, 648 (2010)

    Article  CAS  Google Scholar 

  41. C. Bayram, Z. Vashaei, and M. Razeghi, Appl. Phys. Lett. 96, 042103 (2010)

    Article  CAS  Google Scholar 

  42. P.M. Campbell, A. Tarasov, C.A. Joiner, W.J. Ready, and E.M. Vogel, J. Appl. Phys. 119, 024503 (2016)

    Article  CAS  Google Scholar 

  43. Y. Zhao, Z. Wan, U. Hetmanuik, and M. Anantram, IEEE Electron Device Lett. 37, 1242 (2016)

    Article  CAS  Google Scholar 

  44. S. Sen, F. Capasso, A.Y. Cho, and D. Sivco, IEEE Trans. Electron Devices 34, 2185 (1987)

    Article  Google Scholar 

  45. C.W. Bates Jr., Phys. Rev. 121, 1070 (1961)

    Article  CAS  Google Scholar 

  46. K.J. Chen, T. Waho, K. Maezawa, and M. Yamamoto, IEEE Electron Device Lett. 17, 309 (1996)

    Article  Google Scholar 

  47. J. Zhao, A. Buldum, J. Han, and J.P. Lu, Nanotechnology 13, 195 (2002)

    Article  CAS  Google Scholar 

  48. L. Yang, M.L. Cohen, and S.G. Louie, Nano Lett. 7, 3112 (2007)

    Article  CAS  Google Scholar 

  49. A. Kuloglu, B. Sarikavak-Lisesivdin, S. Lisesivdin, and E. Ozbay, Comput. Mater. Sci. 68, 18 (2013)

    Article  CAS  Google Scholar 

  50. R. Yogi and N.K. Jaiswal, Physica E Low-Dimens. Syst. Nanostruct. 114, 113575 (2019)

    Article  CAS  Google Scholar 

  51. Z. Wang, M. Sun, Y. Zhao, J. Xiao, and X. Dai, Surf. Interfaces 5, 72 (2016)

    Article  CAS  Google Scholar 

  52. S.V. Inge, N.K. Jaiswal, and P.N. Kondekar, Adv. Mater. Interfaces 4, 1700400 (2017)

    Article  CAS  Google Scholar 

  53. V. Sharma, P. Srivastava, and N.K. Jaiswal, IEEE Trans. Electron Devices 65, 3893 (2018)

    Article  CAS  Google Scholar 

  54. N. Liu, J. Liu, S. Wang, and K. Yao, Phys. Lett. A 384, 126127 (2020)

    Article  CAS  Google Scholar 

  55. R. Yogi and N.K. Jaiswal, Phys. Lett. A 383, 532 (2019)

    Article  CAS  Google Scholar 

  56. Y.C. Ling, F. Ning, Y.H. Zhou, and K.Q. Chen, Org. Electron. 19, 92 (2015)

    Article  CAS  Google Scholar 

  57. Y. An, K. Wang, G. Jia, T. Wang, Z. Jiao, Z. Fu, X. Chu, G. Xu, and C. Yang, RSC Adv. 4, 46934 (2014)

    Article  CAS  Google Scholar 

  58. M. Sanaeepur, M. Jafari, and M. Esmaeili, IEEE Trans. Electron Devices 67, 725 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Kharwar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 164 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharwar, S., Singh, S. & Jaiswal, N.K. First-Principles Investigations of N-Vacancy Induced Zigzag Boron Nitride Nanoribbons for Nanoscale Resonant Tunneling Applications. J. Electron. Mater. 50, 5664–5681 (2021). https://doi.org/10.1007/s11664-021-09096-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09096-z

Keywords

Navigation