Skip to main content
Log in

Influence of a piezoelectric ZnO intermediate layer on Rayleigh waves propagating in Sc43%AlN57%/ZnO/diamond hetero-structures subjected to uniaxial stress

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Surface acoustic waves (SAWs) are of practical importance across several fields. Particularly, a wide range of SAW devices is available, which are based on the stacking piezoelectric layered hetero-structures. As such, efficient and stable algorithm of analyzing electromechanical coupling factor (K2) should be of specific interest, inspiring a variety of piezoelectric layered structures. Motivated by the above considerations, this paper exploits the performance of Sc43% AlN57%/ZnO/diamond piezoelectric hetero-structures using matrix and polynomial methods. Consequently, dispersion curves, the electromechanical coupling factor and profiles of Rayleigh waves are calculated, in which the properties of hexagonal intermediate ZnO layer are varied. Here, \( (0001) - [10\bar{1}0]{\text{ZnO}} \) or \( (11\bar{2}0) - [0001]{\text{ZnO}} \) directions of the middle layer were integrated with Sc43% AlN57%/diamond to be a composite hetero-structure with a larger K2 of SAW. Accordingly, a commercial ZnO specimen was characterized by scanning electron microscopy (SEM) as well as Raman and XRD spectroscopy to determine its available crystallographic directions and the C-axis hexagonal character. Comparing with conventional AlN/diamond hetero-structures, the inclusion of ZnO as the intermediate layer provides with an excellent electromechanical coupling factor which significantly improves the \( (11\bar{2}0) - [0001] \) structure. However, comparing with the ZnO/diamond hetero-structure, a high phase velocity (Vph) was observed. Therefore, the development of a well-balanced structure that maximizes the values of Vph and K2 is systematically challenging. Moreover, it was found that initial stresses have a significant effect on the Rayleigh wave velocities. Fundamental A0 Lamb mode can be generated in piezoelectric hetero-structures when the properties of substrate remain very low relative to the film. Numerical results obtained in this paper can provide a deeper insight into the nature of the Rayleigh wave behaviors in piezoelectric hetero-structures, involving a ZnO intermediate layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. A.K. Singh, S. Kumar, R. Kumari, Eur. Phys. J. Plus 133, 120 (2018)

    Article  ADS  Google Scholar 

  2. A. Kumari, S. Kundu, S. Gupta, Eur. Phys. J. Plus 134, 576 (2019)

    Article  ADS  Google Scholar 

  3. Z. Zhou, K. Zhang, J. Zhou, G. Sun, J. Wang, Optic Laser. Technol. 73, 173 (2015)

    Article  ADS  Google Scholar 

  4. K. Aki, P. Richards, Quantitative Seismology, 2nd edn. (Now York, 2002). https://www.amazon.fr/Quantitative-Seismology-Keiiti-Aki/dp/1891389637

  5. W. Wang, J. Liang, Y. Ruan, W. Pang, Z. You, Appl. Phys. Eng. 18, 67 (2017)

    Google Scholar 

  6. L. Qian, C. Li, M. Li, F. Wang, B. Yang, Appl. Phys. Lett. 105, 183501 (2014)

    Article  ADS  Google Scholar 

  7. J.A. Christman, R.R. Woolcott, A.I. Kingon, R.J. Nemanich, Appl. Phys. Lett. 73, 3851 (1998)

    Article  ADS  Google Scholar 

  8. J.T. Luo, B. Fan, F. Zeng, F. Pan, J. Phys. D Appl. Phys. 42, 235406 (2009)

    Article  ADS  Google Scholar 

  9. M. Akiyama, T. Kamohara, K. Kano, A. Teshigahara, Y. Takeuchi, N. Kawahara, Adv. Mater. 21, 593 (2009)

    Article  Google Scholar 

  10. S. Zhang, D. Holec, W.Y. Fu, C.J. Humphreys, M.A. Moram, J. Appl. Phys. 114, 133510 (2013)

    Article  ADS  Google Scholar 

  11. M. Akiyama, K. Umeda, A. Honda, T. Nagase, Appl. Phys. Lett. 102, 021915 (2013)

    Article  ADS  Google Scholar 

  12. M. Benetti, D. Cannata, F.D. Pietrantonio, E. Verona, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1806–1811 (2005)

    Article  Google Scholar 

  13. C. Othmani, H. Zhang, C.F. Lü, F. Takali, Eur. Phys. J. Plus. 134, 1 (2019)

    Article  ADS  Google Scholar 

  14. R. Gharsallaoui, F. Takali, A. Njeh, M. H. Ben Ghozlen, ICCMREA, (2014)

  15. L. Le Brizoual, O. Elmazria, S. Zhgoon, A. Soussou, F. Sarry, M. Abdou Djouadi, IEEE Trans. Ultrason. Ferroelectr. Freq.Control. 57, 1818 (2010)

    Article  Google Scholar 

  16. A.K. Singh, S. Kumar, A. Chattopadhyay, Int. J. Eng. Sci. 89, 35 (2015)

    Article  Google Scholar 

  17. A.K. Singh, S. Guha, Adv. Mater. Struct. (2020). https://doi.org/10.1080/15376494.2020.1736697

    Article  Google Scholar 

  18. Y.Y. Zhou, C.F. Lü, W.Q. Chen, Compos. Struct. 94, 2736 (2012)

    Article  Google Scholar 

  19. X. Guo, P. Wei, Int. J. Solids Struct. 51, 3735 (2014)

    Article  Google Scholar 

  20. S. Guha, A.K. Singh, Int. J. Mech. Sci. 181, 105766 (2020)

    Article  Google Scholar 

  21. C. Othmani, H. Zhang, C.F. Lü, Appl. Math. Model. 78, 148 (2020)

    Article  MathSciNet  Google Scholar 

  22. Z.L. Wang, J.H. Song, Science 312, 242–246 (2006)

    Article  ADS  Google Scholar 

  23. X. Xue, W. Zang, P. Deng, Q. Wang, L. Xing, Y. Zhang, Z.L. Wang, Nano Energy 13, 414–422 (2015)

    Article  Google Scholar 

  24. K. Tsubouchi, K. Sugai, N. Mikoshiba, in Proceedings of the IEEE ultrasonics symposium, pp. 375–380 (1981)

  25. F. Takali, A. Njeh, D. Schneider, M.H. Ben Ghozlen, Acta Acust. United Acust. 98, 223–231 (2012)

    Article  Google Scholar 

  26. K. Li, S. Jing, J.G. Yu, X. Zhang, B. Zhang, Materials 13, 2320 (2020)

    Article  ADS  Google Scholar 

  27. C. Othmani, F. Takali, A. Njeh, Superlattices Microstruct. 106, 86 (2017)

    Article  ADS  Google Scholar 

  28. C. Othmani, F. Takali, A. Njeh, Superlattices Microstruct. 111, 396 (2017)

    Article  ADS  Google Scholar 

  29. C. Othmani, H. Zhang, Compos. Struct. 240, 112085 (2020)

    Article  Google Scholar 

  30. C. Othmani, F. Takali, A. Njeh, Optik 148, 63 (2017)

    Article  ADS  Google Scholar 

  31. C. Othmani, F. Takali, A. Njeh, Eur. Phys. J. Plus 132, 1 (2017)

    Article  Google Scholar 

  32. S. Datta, B.J. Hunsinger, J. Appl. Phys. 49, 475 (1978)

    Article  ADS  Google Scholar 

  33. A. A. Konno, M. Kadota, J. Kushibiki, Y. Ohashi, M. Esashi, Y. Yamamoto, S. Tanaka, in IEEE International Ultrasonics Symposium, vol. 273 (2014)

  34. K. Hashimoto, S. Sato, A. Teshigahara, T. Nakamura, K. Kano, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 637 (2013)

    Article  Google Scholar 

  35. M.A. Caro, S. Zhang, T. Riekkinen, M. Ylilammi, M.A. Moram, O. Lopez Acevedo, J. Molarius, T. Laurila, J. Phys. Condens. Matter. 27, 245901 (2015)

    Article  ADS  Google Scholar 

  36. G. Carlotti, J. Sadhu, F. Dumont, in IEEE International Ultrasonics Symposium, vol. 1037, (2017)

  37. N. Gandhi, J.E. Michaels, S.J. Lee, J. Acoust. Soc. Am. 132, 1284 (2012)

    Article  ADS  Google Scholar 

  38. Q.H. Liu, B.K. Sinha, Geophysics 68, 1731 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China through Grant Nos. 11621062 and 11772295 and was also partly supported by the Fundamental Research Funds for the Central Universities 2016XZZX001-05 and Fundamental Research Funds for the Central Universities (Grant Number N2025001). Farid Takali is grateful for the funding provided to LPM laboratory by the Tunisian Ministry of Higher Education, Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaofeng Lü.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othmani, C., Labiadh, L., Lü, C. et al. Influence of a piezoelectric ZnO intermediate layer on Rayleigh waves propagating in Sc43%AlN57%/ZnO/diamond hetero-structures subjected to uniaxial stress. Eur. Phys. J. Plus 135, 898 (2020). https://doi.org/10.1140/epjp/s13360-020-00912-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00912-9

Navigation