Skip to main content
Log in

Sudden contraction effects in nanochannel cross section on the rarefied gas flow characteristics: LBM analysis

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This mesoscopic investigation aims to study the rarefied gas flow inside a contracting nanochannel in the slip and transitional regimes by two relaxation time lattice Boltzmann method. Bosanquet-type effective viscosity and distribution functions correction at the corner points are used to enhance the precision of slippage velocity on the walls. The boundary conditions at the entrance and exit sections of the nanochannel are assumed nonequilibrium-equilibrium distribution functions. The bounce back-specular reflection boundary conditions are considered for the wall exteriors. It is found that both momentum and rarefaction play essential roles concerning the separation phenomena in nanochannel flow. The higher outlet Knudsen number possesses the higher effective viscosity and shear stress, while the vortices become smaller and tend to disappear at higher Knudsen numbers. The results of the direct simulation Monte Carlo method have been utilized to validate the present numerical prediction, and an outstanding agreement between the results is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R. Arabjamaloei, D.W. Ruth, J. Nat. Gas Sci. Eng. (2016). https://doi.org/10.1016/j.jngse.2016.03.056

    Article  Google Scholar 

  2. P.L.L. Walls, B. Abedian, Int. J. Eng. Sci. (2014). https://doi.org/10.1016/j.ijengsci.2014.02.002

    Article  Google Scholar 

  3. Y. Qi, Y. Che, S. Pan, H. Zhang, Int. J. Heat Mass Transf. (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.154

    Article  Google Scholar 

  4. J. Sun, Y. He, W. Tao, X. Yin, H. Wang, Int. J. Numer Methods Eng. (2012). https://doi.org/10.1002/nme.3229

    Article  Google Scholar 

  5. E.K. Ahangar, M.B. Ayani, J.A. Esfahani, K.C. Kim, Vacuum (2020). https://doi.org/10.1016/j.vacuum.2019.109104

    Article  Google Scholar 

  6. Q. Lv, X. Liu, E. Wang, S. Wang, Phys. Rev. E (2013). https://doi.org/10.1103/PhysRevE.88.013007

    Article  Google Scholar 

  7. E. B. Arkilic, M.A. Schmidt, K.S. Breuer. (1997). IEEE. https://doi.org/10.1109/84.585795

  8. M.T. Ho, J. Li, W. Su, L. Wu, M.K. Borg, Z. Li, Y. Zhang, J. Fluid Mech. (2020). https://doi.org/10.1017/jfm.2020.585

    Article  Google Scholar 

  9. M. Zhong, S. Zou, D. Pan, C. Zhuo, C. Zhong, Physics of Fluids (2020). https://doi.org/10.1063/5.0021332

    Article  Google Scholar 

  10. C. Baranger, Y. Dauvois, G. Marois, J. Mathé, J. Mathiaud, L. Mieussens, European Journal of Mechanics - B/Fluids. (2020). https://doi.org/10.1016/j.euromechflu.2019.11.006

    Article  Google Scholar 

  11. L. Wu, H. Struchtrup, J. Fluid Mech. (2017). https://doi.org/10.1017/jfm.2017.326

    Article  Google Scholar 

  12. S. Taguchi, K. Saito, S. Takata, J. Fluid Mech. (2019). https://doi.org/10.1017/jfm.2018.946

    Article  Google Scholar 

  13. V. Varade, A. Agrawal, A.M. Pradeep, J. Fluid Mech. (2014). https://doi.org/10.1017/jfm.2013.615

    Article  Google Scholar 

  14. J.G. Meolans, T. Veltzke, M.T. Ho, J. Thöming, I. Graur, Microfluid. Nanofluid. (2014). https://doi.org/10.1007/s10404-014-1445-4

    Article  Google Scholar 

  15. A. Taassob, R. Kamali, A. Bordbar, Vacuum (2018). https://doi.org/10.1016/j.vacuum.2018.02.021

    Article  Google Scholar 

  16. A. Gavasane, A. Agrawal, U. Bhandarkar, Vacuum (2019). https://doi.org/10.1016/j.vacuum.2018.06.014

    Article  Google Scholar 

  17. O. Sazhin, Microfluidics and Nanofluidics (2020). https://doi.org/10.1007/s10404-020-02384-w

    Article  Google Scholar 

  18. D. Nabapure, K.R.C. Murthy, Acta Astronaut. (2020). https://doi.org/10.1016/j.actaastro.2020.08.030

    Article  Google Scholar 

  19. E.K. Ahangar, S. Fallah-Kharmiani, S.D. Khakhian, L.P. Wang, Phys. Fluids (2020). https://doi.org/10.1063/5.0008325

    Article  Google Scholar 

  20. A. Zarei, A. Karimipour, A.H.M. Isfahani, Z. Tian, Physica A (2019). https://doi.org/10.1016/j.physa.2019.122453

    Article  Google Scholar 

  21. M. Mozaffari, A. D’Orazio, A. Karimipour, A. Abdollahi, M.R. Safaei, Int. J. Numer. Meth. Heat Fluid Flow (2019). https://doi.org/10.1108/HFF-12-2018-0821

    Article  Google Scholar 

  22. S. Aghakhani, A.H. Pordanjani, A. Karimipour, A. Abdollahi, M. Afrand, Comput. Fluids (2018). https://doi.org/10.1016/j.compfluid.2018.09.012

    Article  Google Scholar 

  23. A.A. Balootaki, A. Karimipour, D. Toghraie, Physica A (2018). https://doi.org/10.1016/j.physa.2018.05.141

    Article  Google Scholar 

  24. E.K. Ahangar, M. Izanlu, S.D. Khakhian, A.A. Mohamad, Q.V. Bach, J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-10129-8

    Article  Google Scholar 

  25. A. D’Orazio, A. Karimipour, Int. J. Heat Mass Transf. (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.029

    Article  Google Scholar 

  26. H. Nazarafkan, B. Mehmandoust, D. Toghraie, A. Karimipour, Int. J. Numer. Methods Heat Fluid Flow (2019). https://doi.org/10.1108/HFF-11-2018-0686

    Article  Google Scholar 

  27. Q. Nguyen, M.J. Ghahderijani, M. Bahrami, E.K. Ahangar, A. D’Orazio, Q.V. Bach, A. Karimipour, Math. Methods. Appl. Sci. (2020). https://doi.org/10.1002/mma.6513

    Article  Google Scholar 

  28. A. Karimipour, A. D’Orazio, M. Goodarzi, Physica A (2018). https://doi.org/10.1016/j.physa.2018.06.031

    Article  Google Scholar 

  29. J.M. Tucny, D. Vidal, S. Leclaire, F. Bertrand, Int. J. Mod. Phys. C (2020). https://doi.org/10.1142/S0129183120500709

    Article  Google Scholar 

  30. M. Timokhin, M. Tikhonov. (2019). https://doi.org/10.1063/1.5119653

    Article  Google Scholar 

  31. X. Niu, S. Hyodo, K. Suga, H. Yamaguchi, Comput. Fluids (2009). https://doi.org/10.1016/j.compfluid.2009.02.003

    Article  Google Scholar 

  32. H. Wang, H. Zhao, Z. Guo, Y. He, C. Zheng, J. Comput. Phys. (2013). https://doi.org/10.1016/j.jcp.2012.12.032

    Article  Google Scholar 

  33. Q. Li, Y.L. He, G.H. Tang, W.Q. Tao, Microfluid. Nanofluid. (2011). https://doi.org/10.1007/s10404-010-0693-1

    Article  Google Scholar 

  34. A. Kakouei, A. Vatani, M. Rasaei, B.S. Sola, H. Moqtaderi. (2017). https://doi.org/10.1016/j.jngse.2017.06.018

    Article  Google Scholar 

  35. M. Ho, J.G. Pérez, M. Reggio, J. Trépanier. (2019). https://doi.org/10.1016/j.pce.2019.02.014

    Article  Google Scholar 

  36. J. Wang, Q. Kang, Y. Wang, R. Pawar, S.S. Rahman, Fuel (2017). https://doi.org/10.1016/j.fuel.2017.05.080

    Article  Google Scholar 

  37. J. Wang, L. Chen, Q. Kang, S.S. Rahman, Int. J. Heat Mass Transf. (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.009

    Article  Google Scholar 

  38. A. Norouzi, J. Abolfazli, J. Stat. Phys. (2015). https://doi.org/10.1007/s10955-015-1420-9

    Article  Google Scholar 

  39. E.K. Ahangar, M.B. Ayani, J.A. Esfahani, Int. J. Mech. Sci. (2019). https://doi.org/10.1016/j.ijmecsci.2019.05.025

    Article  Google Scholar 

  40. I. Ginzburg, Adv. Water Resour. (2005). https://doi.org/10.1016/j.advwatres.2005.03.004

    Article  Google Scholar 

  41. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases, 3rd edn. (Cambridge University Press, Cambridge, 1970)

    MATH  Google Scholar 

  42. A. Beskok, G.E. Karniadakis, Microscale Thermophys. Eng. (2010). https://doi.org/10.1080/108939599199864

    Article  Google Scholar 

  43. V.K. Michalis, A.N. Kalarakis, E.D. Skouras, V.N. Burganos, D.Á. Straight, Microfluid. Nanofluid. (2010). https://doi.org/10.1007/s10404-010-0606-3

    Article  Google Scholar 

  44. S. Yuhong, W.K. Chan, S. Yuhong, W.K. Chan, J. Vac. Sci. Technol., A (2004). https://doi.org/10.1116/1.1647599

    Article  Google Scholar 

  45. X. Liu, Z. Guo, Comput (Appl, Math, 2013). https://doi.org/10.1016/j.camwa.2011.01.035

    Book  Google Scholar 

  46. X.Z. Li, J.C. Fan, H. Yu, Y.B. Zhu, H.A. Wu. (2018). Int J Heat Mass Transf. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.066

  47. Z. Guo, C. Zheng, B. Shi, Phys. Rev. E (2008). https://doi.org/10.1103/PhysRevE.77.036707

    Article  Google Scholar 

  48. C. Cercignani, Mathematical Methods in Kinetic Theory (Springer, New York, 1988)

    MATH  Google Scholar 

  49. N.G. Hadjiconstantinou, Phys. Fluids (2003). https://doi.org/10.1063/1.1587155

    Article  MathSciNet  Google Scholar 

  50. Y.T. Hsia, G.A. Domoto, J. Lubrication Tech. (1983). https://doi.org/10.1115/1.3254526

    Article  Google Scholar 

  51. S.K. Loyalka, Phys. Fluids (1971). https://doi.org/10.1063/1.1693380

    Article  Google Scholar 

  52. S.K. Loyalka, N. Petrellis, T.S. Storvick. Phys. Fluids (1975). https://doi.org/10.1063/1.861293

    Article  Google Scholar 

  53. A.A. Mohamad, Lattice Boltzmann method, 2nd edn. (Springer, London, 2011)

    Book  Google Scholar 

  54. N. Mosavat, B. Hasanidarabadi, P. Pourafshary, J. Petrol. Sci. Eng. (2019). https://doi.org/10.1016/j.petrol.2019.02.029

    Article  Google Scholar 

  55. Z. Guo, C. Shu, Lattice Boltzmann method and its applications in engineering (World Scientific Publishing, Singapore, 2013)

    Book  Google Scholar 

  56. Y. Bakhshan, A. Omidvar, Physica A (2015). https://doi.org/10.1016/j.physa.2015.08.012

    Article  Google Scholar 

  57. J. Wu, K. Tseng, Comput. Fluids (2001). https://doi.org/10.1016/S0045-7930(00)00029-3

    Article  Google Scholar 

  58. M. Wang, Z. Li, Int. J. Heat Fluid Flow (2004). https://doi.org/10.1016/j.ijheatfluidflow.2004.02.024

    Article  Google Scholar 

Download references

Acknowledgements

The English language review of this paper is performed by Dr. Seama Koohi-Fayegh (UOIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Abolfazli Esfahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahangar, E.K., Esfahani, J.A. & Ayani, M.B. Sudden contraction effects in nanochannel cross section on the rarefied gas flow characteristics: LBM analysis. Eur. Phys. J. Plus 135, 818 (2020). https://doi.org/10.1140/epjp/s13360-020-00836-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00836-4

Navigation