Skip to main content
Log in

Anisotropic stars in \(f({\textit{G}},{\textit{T}})\) gravity under class I space-time

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we studied the possible existence of anisotropic spherically symmetric solutions in the arena of modified \(f(\textit{G}, \textit{T})\)-gravity theory. To supply exact solutions of the field equations, we consider that the gravitational Lagrangian can be expressed as the generic function of the quadratic Gauss–Bonnet invariant \(\textit{G}\) and the trace of the stress–energy tensor \(\textit{T}\), i.e., \(f(\textit{G},\textit{T}) = \textit{G}^2 + \chi \textit{T}\), where \(\chi \) is a coupling parameter. We ansatz the gravitational potential: \(g_{rr} \equiv e^{\lambda (r)}\) from the relationship quasi-local mass function, \(e^{-\lambda }=1-\frac{2m(r)}{r}\), and we obtained the gravitational potential: \(g_{tt} \equiv e^{\nu (r)}\) via the embedding class one procedure. In this regard, we investigated that the new solution is well analyzed and well comported through various physical and mathematical tests, which confirmed the physical viability and the stability of the system. The present investigation uncovers that the \(f(\textit{G},\textit{T})\)-gravity via embedding class one approach is a well acceptable to describe compact systems, and we successfully compared the effects of all the necessary physical requirements with the standard results of \(f(\textit{G})\)-gravity, which can be retrieved at \(\chi = 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Bhawal, S. Kar, Phys. Rev. D 46, 2464 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  2. N. Deruelle, T.S. Dolezel, Phys. Rev. D 62, 103502 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  3. A. De Felice, S.J. Tsujikawa, Living Rev. Relativ. 10, 3 (2010)

    Article  Google Scholar 

  4. S. Nojiri, S.D. Odintsov, Phys. Lett. B 631, 1 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  5. G. Cognola et al., Phys. Rev. D 73, 084007 (2006)

    Article  ADS  Google Scholar 

  6. A. De Felice, S. Tsujikawa, Phys. Rev. D 80, 063516 (2009)

    Article  ADS  Google Scholar 

  7. S. Nojiri, S.D. Odintsov, Phys. Lett. B 599, 137 (2004)

    Article  ADS  Google Scholar 

  8. T. Harko et al., Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  9. D. Deb et al., Mon. Not. R. Astron. Soc. 485, 5652 (2019)

    Article  ADS  Google Scholar 

  10. S.K. Maurya et al., Phys. Rev. D 100, 044014 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  11. S.K. Maurya, A. Banerjee, F. Tello-Ortiz, Phys. Dark Universe 27, 100438 (2020)

    Article  Google Scholar 

  12. S.K. Maurya, F. Tello-Ortiz, Phys. Dark Universe 27, 100442 (2020)

    Article  Google Scholar 

  13. S.K. Maurya, F. Tello-Ortiz, Ann. Phys. 414, 168070 (2020)

    Article  Google Scholar 

  14. M. Rahaman, K.N. Singh, A. Errehymy et al., Eur. Phys. J. C 80, 272 (2020)

    Article  ADS  Google Scholar 

  15. S.K. Maurya, A. Errehymy, K.N. Singh et al., Phys. Dark Universe 30, 100640 (2020)

    Article  Google Scholar 

  16. K.N. Singh et al., Phys. Dark Universe 30, 100620 (2020)

    Article  Google Scholar 

  17. S.K. Maurya, K.N. Singh, B. Dayanandan, Eur. Phys. J. C 80, 448 (2020)

    Article  ADS  Google Scholar 

  18. A. Errehymy, M. Daoud, E.H. Sayouty, Eur. Phys. J. C 79, 346 (2019)

    Article  ADS  Google Scholar 

  19. S.K. Maurya, A. Banerjee, M.K. Jasim, J. Kumar, A.K. Prasad, A. Pradhan, Phys. Rev. D 99, 044029 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Errehymy, M. Daoud, Mod. Phys. Lett. A 34, 1950030 (2019)

    Article  ADS  Google Scholar 

  21. S.K. Maurya, Eur. Phys. J. C 79, 958 (2019)

    Article  ADS  Google Scholar 

  22. C.L. Heras, P. León, Fortschr. Phys. 66, 1800036 (2018)

    Article  MathSciNet  Google Scholar 

  23. S.K. Maurya, S.D. Maharaj, D. Deb, Eur. Phys. J. C 79, 170 (2019)

    Article  ADS  Google Scholar 

  24. A. Errehymy, M. Daoud, Eur. Phys. J. C 80, 258 (2020)

    Article  ADS  Google Scholar 

  25. F. Tello-Ortiz et al., Eur. Phys. J. C 79, 885 (2019)

    Article  ADS  Google Scholar 

  26. S.K. Maurya et al., Eur. Phys. C 75, 225 (2015)

    Article  ADS  Google Scholar 

  27. T. Harko, F.S.N. Lobo, Galaxies 2, 410 (2014)

    Article  ADS  Google Scholar 

  28. M. Sharif, A. Ikram, Eur. Phys. J. C 76, 640 (2016)

    Article  ADS  Google Scholar 

  29. M.F. Shamir, M. Ahmad, Eur. Phys. J. C 77, 55 (2017)

    Article  ADS  Google Scholar 

  30. M.F. Shamir, M. Ahmad, Mod. Phys. Lett. A 32, 1750086 (2017)

    Article  ADS  Google Scholar 

  31. M. Sharif, A. Ikram, Phys. Dark Universe 17, 1 (2017)

    Article  ADS  Google Scholar 

  32. M. Sharif, A. Ikram, Int. J. Mod. Phys. D 26, 1750084 (2017)

    Article  ADS  Google Scholar 

  33. M.Z. Bhatti et al., Int. J. Mod. Phys. D 27, 1850044 (2018)

    Article  ADS  Google Scholar 

  34. S. Bahamonde et al., Phys. Rev. D 94, 084042 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Zubair, G. Abbas, arXiv:1412.2120

  36. G. Abbas et al., Astrophys. Space Sci. 357, 158 (2015)

    Article  ADS  Google Scholar 

  37. A.V. Astashenok, S. Capozziello, S.D. Odintsov, J. Cosmol. Astropart. Phys. 1501, 001 (2015)

    Article  ADS  Google Scholar 

  38. M. Sharif, M.Z. Gul, Eur. Phys. J. Plus 133, 345 (2017)

    Article  Google Scholar 

  39. M. Sharif, M.Z. Gul, Int. J. Mod. Phys. D 28, 1950054 (2019)

    Article  ADS  Google Scholar 

  40. M. Zubair et al., Astrophys. Space Sci. 361, 238 (2016)

    Article  ADS  Google Scholar 

  41. D. Deb et al. arXiv:1811.11797v1

  42. M. Sharif, G. Abbas, Eur. Phys. J. Plus 128, 102 (2013)

    Article  Google Scholar 

  43. M. Sharif, G. Abbas, J. Phys. Soc. Jpn. 82, 034006 (2013)

    Article  ADS  Google Scholar 

  44. M.F. Shamir, M. Ahmad, Eur. Phys. J. C 78, 279 (2018)

    Article  Google Scholar 

  45. M.F. Shamir, M. Ahmad, Phys. Rev. D 97, 104031 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  46. M.F. Shamir, M.A. Sadiq, Eur. Phys. J. C 78, 279 (2018)

    Article  ADS  Google Scholar 

  47. M. Ahmad, M.F. Shamir, Astrophys. Space Sci. 364(3), 46 (2019)

    Article  ADS  Google Scholar 

  48. M.F. Shamir, N. Uzair, Mod. Phys. Lett. A 34(27), 1950215 (2019)

    Article  ADS  Google Scholar 

  49. M.F. Shamir, M. Ahmad, Mod. Phys. Lett. A 34(5), 1950038 (2019)

    Article  ADS  Google Scholar 

  50. J. Eiesland, Trans. Am. Math. Soc. 27, 213 (1925)

    Article  MathSciNet  Google Scholar 

  51. L.P. Eisenhart, Riemannian Geometry (Princeton University Press, Princeton, 1966)

    MATH  Google Scholar 

  52. K.R. Karmarkar, Proc. Ind. Acad. Sci. A 27, 56 (1948)

    Article  Google Scholar 

  53. N.S. Pandey, S.P. Sharma, Gen. Rel. Gravit. 14, 113 (1982)

    Article  ADS  Google Scholar 

  54. G. Mustafa, X. Tie-Cheng, M.F. Shamir, Ann. Phys. 413, 168059 (2020)

    Article  Google Scholar 

  55. G. Mustafa, M.F. Shamir, M. Ahmad, A. Ashraf, Chin. J. Phys. 67, 576 (2020)

    Article  Google Scholar 

  56. S.K. Maurya et al., Eur. Phys. J. A 52, 191 (2016)

    Article  ADS  Google Scholar 

  57. S.K. Maurya et al., Astrophys. Space Sci. 361, 351 (2016)

    Article  ADS  Google Scholar 

  58. K. Lake, Phys. Rev. D 67, 104015 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  59. H. Abreu, H. Hernandez, L.A. Nunez, Class. Quantum Gravit. 24, 4631 (2007)

    Article  ADS  Google Scholar 

  60. R. Chan, L. Herrera, N.O. Santos, Mon. Not. R. Astron. Soc. 265, 533 (1993)

    Article  ADS  Google Scholar 

  61. B.V. Ivanov, Phys. Rev. D 65, 104011 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Maurya.

Appendix A

Appendix A

The explicit expressions for G, \(G^{\prime }\) and \(G^{\prime \prime }\) are given as,

$$\begin{aligned} G(r)= & {} \frac{8 b B (a-b)^{3/2} \sqrt{b r^2+1}}{\left( a r^2+1\right) ^3 \left( B \sqrt{a-b} \sqrt{b r^2+1}+A b\right) }\\ G\,'(r)= & {} \frac{24 b B r (a-b)}{\left( a r^2+1\right) ^4 \sqrt{b r^2+1} \left( B \sqrt{a-b} \sqrt{b r^2+1}+A b\right) ^3} \Big [a^2 B \Big \{6 B \sqrt{a-b} \left( b r^2+1\right) ^2+A b \\&\quad (11 b r^2+12) \sqrt{b r^2+1}\Big \}+a b \Big \{A^2 b \sqrt{a-b} \left( 5 b r^2+6\right) -6 \sqrt{a-b} \left( b B r^2+B\right) ^2-\\&\quad A b B\sqrt{b r^2+1} \left( 11 b r^2+13\right) \Big \}+A b^3 \left( B \sqrt{b r^2+1}-A \sqrt{a-b}\right) \Big ],\\ G\,''(r)= & {} -\frac{24 b B (a-b)}{\left( a r^2+1\right) ^5 \left( b r^2+1\right) ^{3/2} \left( B \sqrt{a-b} \sqrt{b r^2+1}+A b\right) ^4} \Big [42 a^4 B^3 r^2 \left( b r^2+1\right) ^{7/2}+ \\&\quad a^3 B \Big \{A b B r^2 \sqrt{a-b} \left( 112 b^3 r^6+353 b^2 r^4+367 b r^2+126\right) +2 A^2 b^2 r^2 (50 b^2 r^4 \\&+\,115 b r^2+63) \sqrt{b r^2+1}-6 B^2 \left( 14 b r^2+1\right) \left( b r^2+1\right) ^{7/2}\Big \}+a^2 b \Big \{A^3 b^2 r^2 \sqrt{a-b}\\&\quad \left( 30 b^2 r^4+73 b r^2+42\right) -A B^2 \sqrt{a-b} \left( 112 b^4 r^8+387 b^3 r^6+447 b^2 r^4+190 b r^2+18\right) \\&-\,2 A^2 b B \sqrt{b r^2+1} \left( 50 b^3 r^6+138 b^2 r^4+91 b r^2+9\right) +6 B^3 \left( 7 b r^2+2\right) \left( b r^2+1\right) ^{7/2}\Big \}\\&+\,A b^3 \left( A^2 b \sqrt{a-b}+B^2 \sqrt{a-b} \left( 2 b^2 r^4+b r^2-1\right) +2 A b B \left( b r^2-1\right) \sqrt{b r^2+1}\right) +a b^2 \\&\quad \Big \{-2 A^3 b \sqrt{a-b} \left( 9 b^2 r^4+11 b r^2+3\right) +A B^2 \sqrt{a-b} \left( 34 b^3 r^6+78 b^2 r^4+63 b r^2+19\right) \\&+2 A^2 b B \left( 23 b^2 r^4+27 b r^2+10\right) \sqrt{b r^2+1}-6 B^3 \left( b r^2+1\right) ^{7/2}\Big \} \Big ] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, S.K., Newton Singh, K., Errehymy, A. et al. Anisotropic stars in \(f({\textit{G}},{\textit{T}})\) gravity under class I space-time. Eur. Phys. J. Plus 135, 824 (2020). https://doi.org/10.1140/epjp/s13360-020-00832-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00832-8

Navigation