Skip to main content
Log in

Anisotropic spheres via embedding approach in \(f(R,\phi ,X)\) gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this manuscript, we investigate the behavior of stellar structure through embedding approach in \(f(R, \phi , X)\) modified theory of gravity, where R denotes the Ricci scalar, \(\phi \) represents the scalar potential, and X indicates the kinetic potential. For this purpose, we consider the spherically symmetric space-time with anisotropic fluid. We further choose three different stars, i.e., LMC X-4, Cen X-3, and EXO 1785-248 to demonstrate the behavior of stellar structures. We further compare the Schwarzschild space-time as exterior geometry with spherically symmetric space-time to calculate the values of unknown parameters. In this regard, we investigate the graphical features of stellar spheres such as energy density, pressure components, anisotropic component, equation of state parameters, stability analysis and energy conditions. Furthermore, we investigate some extra conditions such as mass function, compactness factor and surface redshift, respectively. The observed behavior of these attributes aligns with accepted physical properties, and the emerging outcomes fall within the observed range. We find that the embedding class one solution for anisotropic compact stars is viable and stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability Statement

No data were used for the research in this article. It is pure mathematics. The authors declare that the data supporting the findings of this study are available within the article.

References

  1. A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116(3), 1009 (1998)

    Article  ADS  Google Scholar 

  2. A. Malik et al., Some dark energy cosmological models in \(f (R, \phi )\) gravity. New Astron. 89, 101631 (2021)

    Article  Google Scholar 

  3. D. Wang et al., Observational constraints on a logarithmic scalar field dark energy model and black hole mass evolution in the Universe. Eur. Phys. J. C 83(7), 1–14 (2023)

    Article  ADS  Google Scholar 

  4. M. Tegmark et al., Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69(10), 103501 (2004)

    Article  ADS  MATH  Google Scholar 

  5. P.A.R. Ade et al., Detection of B-mode polarization at degree angular scales by BICEP2. Phys. Rev. Lett. 112(24), 241101 (2014)

    Article  ADS  Google Scholar 

  6. P.A.R. Ade et al., Joint analysis of BICEP2/Keck array and Planck data. Phys. Rev. Lett. 114(10), 101301 (2015)

    Article  ADS  Google Scholar 

  7. P.A.R. Ade et al., Improved constraints on cosmology and foregrounds from BICEP2 and Keck Array cosmic microwave background data with inclusion of 95 GHz band. Phys. Rev. Lett. 116(3), 031302 (2016)

    Article  ADS  Google Scholar 

  8. P.A.R. Ade et al., Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys. 571, A1 (2014)

    Article  Google Scholar 

  9. P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2015)

    Google Scholar 

  10. P.A.R. Ade et al., Planck 2015 results-XX. Constraints on inflation. Astron. Astrophys. 594, A20 (2016)

    Article  Google Scholar 

  11. N. Jarosik et al., Seven-year wilkinson microwave anisotropy probe (WMAP*) observations: sky maps, systematic errors, and basic results. Astrophys. J. Suppl. Ser. 192(2), 14 (2011)

    Article  ADS  Google Scholar 

  12. G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl. Ser. 208(2), 19 (2013)

    Article  ADS  Google Scholar 

  13. M.F. Shamir, A. Malik, Bardeen compact stars in modified \(f (R)\) gravity. Chin. J. Phys. 69, 312–321 (2021)

    Article  MathSciNet  Google Scholar 

  14. M.F. Shamir, A. Malik, Behavior of anisotropic compact stars in \(f (R, \phi )\) gravity. Commun. Theor. Phys. 71(5), 599 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. S.A. Mardan et al., Spherically symmetric generating solutions in \(f (R)\) theory. Eur. Phys. J. Plus 138(9), 782 (2023)

    Article  Google Scholar 

  16. A. Malik et al., Investigation of traversable wormhole solutions in modified \(f (R)\) gravity with scalar potential. Eur. Phys. J. C 83(6), 522 (2023)

    Article  ADS  Google Scholar 

  17. A. Malik et al., Traversable wormhole solutions in the \(f (R)\) theories of gravity under the Karmarkar condition. Chin. Phys. C 46(9), 095104 (2022)

    Article  ADS  Google Scholar 

  18. T. Naz et al., Relativistic configurations of Tolman Stellar spheres in \(f (R, G)\) gravity. Int. J. Geom. Methods Mod. Phys. (2023). https://doi.org/10.1142/S0219887823502225

    Article  MathSciNet  Google Scholar 

  19. A. Rashid et al., A comprehensive study of Bardeen stars with conformal motion in f (G) gravity. Eur. Phys. J. C 83(11), 997 (2023)

    Article  ADS  Google Scholar 

  20. A. Malik et al., Bardeen compact stars in modified \(f (G)\) gravity. Can. J. Phys. 100(10), 452–462 (2022)

    Article  ADS  Google Scholar 

  21. Z. Yousaf et al., Bouncing cosmology with 4D-EGB gravity. Int. J. Theor. Phys. 62(7), 155 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  22. Z. Yousaf et al., Stability of anisotropy pressure in self-gravitational systems in \(f (G)\) gravity. Axioms 12(3), 257 (2023)

    Article  Google Scholar 

  23. M.F. Shamir et al., Relativistic Krori-Barua compact stars in \(f(R, T)\) gravity. Fortschr. Phys. 70(12), 2200134 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Z. Asghar et al., Study of embedded class-I fluid spheres in \(f (R, T)\) gravity with Karmarkar condition. Chin. J. Phys. 83, 427–437 (2023)

    Article  MathSciNet  Google Scholar 

  25. A. Malik et al., Analysis of charged compact stars in \(f (R, T)\) gravity using Bardeen geometry. Int. J. Geom Methods Mod. Phys. 20(04), 2350061 (2023)

    Article  MathSciNet  Google Scholar 

  26. A. Malik et al., Development of local density perturbation technique to identify cracking points in \(f (R, T)\) gravity. Eur. Phys. J. C 83(9), 845 (2023)

    Article  ADS  Google Scholar 

  27. A. Malik et al., Singularity-free anisotropic compact star in \(f (R, \phi )\) gravity via Karmarkar condition. Int. J. Geom. Methods Mod. Phys. (2023). https://doi.org/10.1142/S021988782450018X

    Article  Google Scholar 

  28. A. Malik, Analysis of charged compact stars in modified \(f (R, \phi )\) theory of gravity. New Astron. 93, 101765 (2022)

    Article  Google Scholar 

  29. Z. Asghar et al., Comprehensive analysis of relativistic embedded class-I exponential compact spheres in \(f (R, \phi )\) gravity via Karmarkar condition. Commun. Theor. Phys. 75, 105401 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  30. A. Malik, A study of Levi-Civita’s cylindrical solutions in \( f (R,\phi ) \) gravity. Eur. Phys. J. Plus 136(11), 1–16 (2021)

    Article  Google Scholar 

  31. A. Malik et al., Noether symmetries of LRS Bianchi type-I spacetime in \(f (R, \phi , X)\) gravity. Int. J. Geom. Methods Mod. Phys. 17(11), 2050163 (2020)

    Article  MathSciNet  Google Scholar 

  32. A. Malik, A. Nafees, Existence of static wormhole solutions using \(f (R, \phi , X)\) theory of gravity. New Astron. 89, 101632 (2021)

    Article  Google Scholar 

  33. H. Nazar, G. Abbas, Study of gravitational collapse for anisotropic Karmarkar star in minimally coupled \(f (R)\) gravity. Chin. J. Phys. 79, 124–140 (2022)

    Article  MathSciNet  Google Scholar 

  34. A. Malik et al., Anisotropic spheres via embedding approach in \(f (R)\) gravity. Int. J. Geom. Methods Mod. Phys. 19(05), 2250073 (2022)

    Article  MathSciNet  Google Scholar 

  35. S.K. Maurya et al., Isotropization of embedding Class I spacetime and anisotropic system generated by complexity factor in the framework of gravitational decoupling. Eur. Phys. J. C 82(2), 100 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  36. M. Sharif, T. Naseer, Effects of non-minimal matter-geometry coupling on embedding class-one anisotropic solutions. Phys. Scr. 97(5), 055004 (2022)

    Article  ADS  Google Scholar 

  37. E. Gudekli et al., Anisotropic stellar model in \(f (T, \tau )\) gravity under the Karmarkar condition. Int. J. Geom. Methods Mod. Phys. 19(04), 2250056 (2022)

    Article  MathSciNet  Google Scholar 

  38. S. Sarkar et al., Embedding class 1 model of anisotropic fluid spheres in \(f (R, T)\) gravity. Chin. J. Phys. 77, 2028–2046 (2022)

    Article  MathSciNet  Google Scholar 

  39. A. Errehymy et al., Anisotropic stars of class one space-time in \(f (R, T)\) gravity under the simplest linear functional of the matter-geometry coupling. Chin. J. Phys. 77, 1502–1522 (2022)

    Article  MathSciNet  Google Scholar 

  40. A. Ditta, T. Xia, Anisotropic compact stars features using Tolman Kuchowiz and embedding space time in Rastall Teleparallel gravity. Chin. J. Phys. 79, 57–68 (2022)

    Article  MathSciNet  Google Scholar 

  41. M. Sharif, T. Naseer, Effects of non-minimal matter-geometry coupling on embedding class-one anisotropic solutions. Phys. Scr. 97(5), 055004 (2022)

    Article  ADS  Google Scholar 

  42. M. Sharif, K. Hassan, Complexity for dynamical anisotropic sphere in \(f (G, T)\) gravity. Chin. J. Phys. 77, 1479–1492 (2022)

    Article  MathSciNet  Google Scholar 

  43. M. Zubair et al., Physical viability of anisotropic compact stars solutions under Karmarkar condition in \(f (R, \tau )\) theory of gravity. Mod. Phys. Lett. A 37(09), 2250052 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  44. N. Pant et al., Relativistic charged stellar model of the Pant interior solution via gravitational decoupling and Karmarkar conditions. Mod. Phys. Lett. A 37(14), 2250072 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  45. A. Usman, M.F. Shamir, Collapsing stellar structures in \(f (R)\) gravity using Karmarkar condition. New Astron. 91, 101691 (2022)

    Article  Google Scholar 

  46. S. Bahamonde et al., Generalized \(f (R, \phi, X)\) gravity and the late-time cosmic acceleration. Universe 1(2), 186–198 (2015)

    Article  ADS  Google Scholar 

  47. S. Bahamonde et al., New exact spherically symmetric solutions in \(f (R, \phi, X)\) gravity by Noether’s symmetry approach. J. Cosmol. Astropart. Phys. 2019(02), 016 (2019)

    Article  MathSciNet  Google Scholar 

  48. A. Malik et al., A study of anisotropic compact stars in \(f (R, \phi , X)\) theory of gravity. Int. J. Geom. Methods Mod. Phys. 19(02), 2250028 (2022)

    Article  MathSciNet  Google Scholar 

  49. A. Malik et al., A study of cylindrically symmetric solutions in \(f (R, \phi , X)\) theory of gravity. Eur. Phys. J. C 82(2), 166 (2022)

    Article  ADS  Google Scholar 

  50. M.F. Shamir et al., Noncommutative wormhole solutions in modified \(f (R)\) theory of gravity. Chin. J. Phys. 73, 634–648 (2021)

    Article  MathSciNet  Google Scholar 

  51. A. Malik et al., A comprehensive discussion for the identification of cracking points in \(f (R)\) theories of gravity. Eur. Phys. J. C 83(8), 765 (2023)

    Article  ADS  Google Scholar 

  52. A. Malik et al., Singularity-free anisotropic strange quintessence stars in \(f (R, \phi , X)\) theory of gravity. Eur. Phys. J. Plus 138(5), 418 (2023)

    Article  Google Scholar 

  53. A. Malik et al., A study of charged stellar structure in modified \(f (R, \phi , X)\) gravity. Int. J. Geom. Methods Mod. Phys. 19(11), 2250180 (2022)

    Article  MathSciNet  Google Scholar 

  54. A. Malik, M.F. Shamir, Dynamics of some cosmological solutions in modified \(f (R)\) gravity. New Astron. 82, 101460 (2021)

    Article  Google Scholar 

  55. M.F. Shamir et al., Dark \(f (R, \phi , X)\) universe with Noether symmetry. Theor. Math. Phys. 205(3), 1692–1705 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  56. R.L. Bowers, E.P.T. Liang, Astrophys. J. 188, 657 (1974)

    Article  ADS  Google Scholar 

  57. S.K. Maurya et al., Anisotropic stars in modified gravity: an extended gravitational decoupling approach. Chin. Phys. C 46, 105105 (2022)

    Article  ADS  Google Scholar 

  58. J. Kumar, P. Bharti, Relativistic models for anisotropic compact stars: a review. New Astron. Rev. 95, 101662 (2022)

    Article  Google Scholar 

  59. K.R. Karmarkar, Gravitational metrics of spherical symmetry and class one. Proceedings of the Indian Academy of Sciences-Section A. Vol. 27. (Springer India, 1948)

  60. M.K. Gokhroo, A.L. Mehra, Anisotropic spheres with variable energy density in general relativity. Gen. Relativ. Gravit. 26, 75–84 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  61. S.N. Pandey, S.P. Sharma, Insufficiency of Karmarkar’s condition. Gen. Relativ. Gravit. 14, 113–115 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. K. Lake, All static spherically symmetric perfect-fluid solutions of Einstein’s equations. Phys. Rev. D 67(10), 104015 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  63. T. Gangopadhyay et al., Strange star equation of state fits the refined mass measurement of 12 pulsars and predicts their radii. Mon. Not. R. Astron. Soc. 431, 3216–21 (2013)

    Article  ADS  Google Scholar 

  64. S.K. Maurya et al., Anisotropic stars via embedding approach in Brans-Dicke gravity. Eur. Phys. J. C 81(8), 729 (2021)

    Article  ADS  Google Scholar 

  65. N. Sarkar et al., Compact star models in class spacetime. Eur. Phys. J. C 79, 1–13 (2019)

    Article  Google Scholar 

  66. K.V. Staykov et al., Gravitational wave asteroseismology of neutron and strange stars in \(R^2\) gravity. Phys. Rev. D 92(4), 043009 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  67. J.M.Z. Pretel et al., Radial oscillations and stability of compact stars in \(f (R, T)= R+ 2 \beta T\) gravity. J. Cosmol. Astropart. Phys. 2021(04), 064 (2021)

    Article  MathSciNet  Google Scholar 

  68. L. Sarmah et al., Stability criterion for white dwarfs in Palatini \(f (R)\) gravity. Phys. Rev. D 105(2), 024028 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  69. L. Herrera, Cracking of self-gravitating compact objects. Phys. Lett. A 165(3), 206–210 (1992)

    Article  ADS  Google Scholar 

  70. H. Abreu et al., Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects. Class. Quantum Gravity 24(18), 4631 (2007)

    Article  ADS  MATH  Google Scholar 

  71. K. Atazadeh, F. Darabi, Energy conditions in \(f (R, G)\) gravity. Gen. Relativ. Gravit. 46, 1–14 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  72. J. Santos et al., Energy conditions in \(f (R)\) gravity. Phys. Rev. D 76(8), 083513 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  73. J. Santos et al., Energy conditions constraints on a class of \(f (R)\)-gravity. Int. J. Mod. Phys. D 19(08n10), 1315–1321 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. K. Atazadeh et al., Energy conditions in \(f (R)\) gravity and Brans-Dicke theories. Int. J. Mod. Phys. D 18(07), 1101–1111 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. H.A. Buchdahl, General relativistic fluid spheres. Phys. Rev. 116(4), 1027 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. B.V. Ivanov, Static charged perfect fluid spheres in general relativity. Phys. Rev. D 65(10), 104001 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  77. M.F. Shamir et al., Wormhole solutions in modified \(f (R, \phi, X)\) gravity. Int. J. Mod. Phys. A 36(04), 2150021 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  78. R.C. Tolman, Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55(4), 364 (1939)

    Article  ADS  MATH  Google Scholar 

  79. J.R. Oppenheimer, G.M. Volkoff, On massive neutron cores. Phys. Rev. 55(4), 374 (1939)

    Article  ADS  MATH  Google Scholar 

  80. H. Heintzmann, W. Hillebrandt, Neutron stars with an anisotropic equation of state-mass, redshift and stability. Astron. Astrophys. 38, 51–55 (1975)

    ADS  Google Scholar 

  81. W. Hillebrandt, K.O. Steinmetz, Anisotropic neutron star models-Stability against radial and nonradial pulsations. Astron. Astrophys. 53, 283–287 (1976)

    ADS  Google Scholar 

Download references

Acknowledgements

Adnan Malik acknowledges the Grant No. YS304023912 to support his Postdoctoral Fellowship at Zhejiang Normal University, China. This paper was completed during the postdoctoral fellowship of the first author under the supervision of Professor Xia at Zhejiang Normal University, China.

Author information

Authors and Affiliations

Authors

Contributions

We declare that all the authors have same contributions to this paper.

Corresponding author

Correspondence to Yonghui Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

$$\begin{aligned} t_1(r)= &\, (1+hr^2).\\ t_2(r)= &\, (t_1(r)^2+ohr^2t_1(r)^{\tau }).\\ t_3(r)= &\, 60-3\tau +2(-20+\tau (19+3\tau ))hr^2+(1+\tau )(-4+\tau +\tau ^2)h^2r^4.\\ t_4(r)= &\, 5+hr^2(55-20\tau +(47+4(-4+\tau )\tau )hr^2+(29-12\tau (1+\tau ))h^2r^4).\\ t_5(r)= &\, 3(1+\tau )r^2+(120+\tau (-312+241\tau ))\gamma -3r^{2+2\alpha }\alpha ^2.\\ t_6(r)= &\, (4+\tau )r^2+12(-10+9\tau )\gamma -2r^{2+2\alpha }\alpha ^2.\\ t_7(r)= &\, 3\tau r^2+216\gamma +2\tau (-70+\tau (-87+71\tau ))\gamma -2r^{2+2\alpha }\alpha ^2.\\ t_8(r)= &\, (-1+2\tau )r^2+2(-24+\tau (56+\tau (-27+\tau (-30+17\tau ))))\gamma -r^{2+2\alpha }\alpha ^2.\\ t_9(r)= &\, (20-3r^{2\alpha }\alpha ^2+2h^2r^216(4+3\tau )r^2+420\gamma -16\tau (3+14\tau )\alpha -9r^{2+2\alpha }\alpha ^2)+4h((14+3\tau )r^2+4(27-46\tau )\alpha -\\= &\, 3r^{2+2\alpha }\alpha ^2)+4h^3r^4((2+9\tau )r^2+4(27+\tau (4(5-16\tau )\tau ))\gamma -3r^{2+2\alpha }\alpha ^2)+h^4r^6(4(-1+3\tau )r^2+4(75+4\tau (-36\\= &\, +\tau (21+2\tau -6\tau ^2)))\gamma -3r^{2+2\alpha }\alpha ^2).\\ t_{10}(r)= &\, (1+(-1+\tau )hr^2).\\ t_{11}(r)= &\, 116+4(-3+56\tau )hr^2+(-84+\tau (16+155\tau ))h^2r^4+(-1+\tau )(-44+\tau (68+39\tau ))h^3r^6.\\ t_{12}(r)= &\, 33-28\tau +(-15+4(20-3\tau )\tau )hr^2+(-5+4\tau (-1+9\tau ))h^2r^4.\\ t_{13}(r)= &\, 8+66\tau +(-12+\tau (16+59\tau ))hr^2+(24+7\tau (6+\tau (-1+4\tau )))h^2r^4+2(-1+\tau )(1+\tau (11+\tau (4+3\tau )))h^3r^6.\\ t_{14}(r)= &\, (4+4(1+2\tau )hr^2+16(-1+4\tau )h\gamma -r^{2\alpha }t_{1}(r)\alpha ^2).\\ t_{15}(r)= &\, r^2t_1(r)^6+o^3h^3r^8t_1(r)^{3\tau }+2t_1(r)^4(11+3hr^2(-18+hr^2))\gamma +o^2h^2r^4t_1(r)^{2\tau }(3(r+hr^3)^2+4(59+hr^2(4\\= &\, -39hr^2))\gamma )+ohr^2t_1(r)^{2+\tau }(3(r+hr^3)^2+h(-231+hr^2(194+45hr^2))\gamma ).\\ t_{16}(r)= &\, (t_1(r)^7+8o^4h^4r^6(t_1(r)^4)^{\tau }\gamma +8ht_1(r)^5(-5+hr^2(8+hr^2))\gamma -oh(1+hr^2)^{3+\tau }(-3(r+hr^3)^2+4(\tau +hr^2(-1\\= &\, +hr^2(-52+17hr^2)))\gamma )+o^3h^3r^4t_1(r)^{3\tau }(26\gamma +r^2t_1(r)+6h(6+7hr^2)\gamma ))+o^3h^2r^2t_1(r)^{2+2\tau }(226\gamma +r^2(3-\\= &\, 80h\alpha +hr^2(3+158h\gamma ))).\\ t_{17}(r)= &\, -102\gamma +r^2(-3+3hr^2(-1+hr^2+h^2r^4)-2h(129+hr^2(89+43hr^2))\gamma +r^{2\alpha }t_1(r)^3\alpha ^2). \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, A., Xia, Y., Almas, A. et al. Anisotropic spheres via embedding approach in \(f(R,\phi ,X)\) gravity. Eur. Phys. J. Plus 138, 1091 (2023). https://doi.org/10.1140/epjp/s13360-023-04721-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04721-8

Navigation