Skip to main content
Log in

Plasma-covered long cylindrical non-isotropic dielectric lenses for targeted control of energy distribution

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, a long column lens with a circular cross section made of two transversely non-isotropic dielectric parts covered by an isotropic plasma layer, is studied. The response of the mentioned object to the presence of plane monochromatic electromagnetic waves will be investigated. The finite element method has been used to calculate the field equations and the amplitudes of scattered waves in this research. This structure can be purposefully used as a device to focus electromagnetic wave energy in a specific area that its operation will be discussed by scattering theory. The electromagnetic responses of this structure have been simulated for two modes TE, TM of the incident wave, separately. Since in this lens a plasma region exists, the plasma can be considered as transparent or non-transparent states, with variations of plasma frequency in a fixed incident wave frequency. Here we consider the mentioned states too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. S. Ahmed, Q.A. Naqvi, Scattering of electromagnetic waves by a coated nihility cylinder. J. Infrared Millim. Terahertz Waves 30(10), 1044 (2009). https://doi.org/10.1007/s10762-009-9531-5

    Article  Google Scholar 

  2. S. Ahmed, Q.A. Naqvi, Electromagnetic scattering of two or more incident plane waves by a perfect electromagnetic conductor cylinder coated with a metamaterial. Prog. Electromagn. Res. 10, 75–90 (2008). https://doi.org/10.2528/pierb08083101

    Article  Google Scholar 

  3. J. Monzon, Three-dimensional scattering by an infinite homogeneous anisotropic circular cylinder: a spectral approach. IEEE Trans. Antennas Propag. 35(6), 670–682 (1987). https://doi.org/10.1109/tap.1987.1144159

    Article  ADS  Google Scholar 

  4. L.K. Hady, A.A. Kishk, Electromagnetic scattering from conducting circular cylinder coated by meta-materials and loaded with helical strips under oblique incidence. Prog. Electromagn. Res. 3, 189–206 (2008). https://doi.org/10.2528/pierb07121107

    Article  Google Scholar 

  5. S. Ahmed, Q.A. Naqvi, Electromagnetic scattering from a perfect electromagnetic conductor circular cylinder coated with a metamaterial having negative permittivity and/or permeability. Opt. Commun. 281(23), 5664–5670 (2008). https://doi.org/10.1016/j.optcom.2008.09.011

    Article  ADS  Google Scholar 

  6. S. Rao, D. Wilton, A. Glisson, Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 30(3), 409–418 (1982). https://doi.org/10.1109/tap.1982.1142818

    Article  ADS  Google Scholar 

  7. C. Yeh, P.K.C. Wang, Scattering of obliquely incident waves by inhomogeneous fibers. J. Appl. Phys. 43(10), 3999–4006 (1972). https://doi.org/10.1063/1.1660863

    Article  ADS  Google Scholar 

  8. D. Zutter, Scattering by a rotating circular cylinder with finite conductivity. IEEE Trans. Antennas Propag. 31(1), 166–169 (1983). https://doi.org/10.1109/tap.1983.1142995

    Article  ADS  Google Scholar 

  9. C.S. Kim, C. Yeh, Scattering of an obliquely incident wave by a multilayered elliptical lossy dielectric cylinder. Radio Sci. 26(05), 1165–1176 (1991). https://doi.org/10.1029/91rs01706

    Article  ADS  Google Scholar 

  10. S. Golharani, Z. Rahmani, B. Jazi, The dependence of resonance frequency to landing angle in reciprocal scattering phenomena of the waves from an elliptical plasma dielectric antenna. IEEE Trans. Plasma Sci. 47(1), 233–242 (2018). https://doi.org/10.1109/tps.2018.2883696

    Article  ADS  Google Scholar 

  11. B. Jazi, S. Golharani, Z. Rahmani, Scattering from an eccentric system, including a dielectric rod placed in a thin annular magnetized relativistic rotating electron beam (TAMRREB). Waves Random Complex Media 25(2), 141–153 (2015). https://doi.org/10.1080/17455030.2014.989934

    Article  ADS  MATH  Google Scholar 

  12. H. Horvath, Gustav Mie and the scattering and absorption of light by particles: historic developments and basics. J. Quant. Spectrosc. Radiat. Transf. 110(11), 787–799 (2009). https://doi.org/10.1016/j.jqsrt.2009.02.022

    Article  ADS  Google Scholar 

  13. A.K. Ram, K. Hizanidis, Scattering of electromagnetic waves by a plasma sphere embedded in a magnetized plasma. Radiat. Eff. Defects Solids 168(10), 759–775 (2013). https://doi.org/10.1080/10420150.2013.835633

    Article  ADS  Google Scholar 

  14. Y.-L. Geng, X.-B. Wu, L.-W. Li, B.-R. Guan, Mie scattering by a uniaxial anisotropic sphere. Phys. Rev. E 70(5), 056609 (2004). https://doi.org/10.1103/physreve.70.056609

    Article  ADS  Google Scholar 

  15. L. Kai, P. Massoli, Scattering of electromagnetic-plane waves by radially inhomogeneous spheres: a finely stratified sphere model. Appl. Opt. 33(3), 501–511 (1994). https://doi.org/10.1364/ao.33.000501

    Article  ADS  Google Scholar 

  16. G. Gouesbet, B. Maheu, G. Grehan, Scattering of a Gaussian beam by a sphere using a Bromwich formulation: case of an arbitrary location. Part. Part. Syst. Charact. 5(1), 1–8 (1988). https://doi.org/10.1002/ppsc.19880050102

    Article  Google Scholar 

  17. G. Gouesbet, B. Maheu, G. Grehan, Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation. JOSA A 5(9), 1427–1443 (1988). https://doi.org/10.1364/josaa.5.001427

    Article  ADS  MathSciNet  Google Scholar 

  18. G. Gouesbet, G. Grehan, B. Maheu, Scattering of a Gaussian beam by a Mie scatter center using a Bromwich formalism. J. Opt. 16(2), 83 (1985). https://doi.org/10.1088/0150-536x/16/2/004

    Article  ADS  Google Scholar 

  19. A.L. Cullen, O. Ozkan, L.A. Jackson, Point-matching technique for rectangular-cross-section dielectric rod. Electron. Lett. 7(17), 497–499 (1971). https://doi.org/10.1049/el:19710338

    Article  ADS  Google Scholar 

  20. R. Graglia, P. Uslenghi, Electromagnetic scattering from anisotropic materials, part II: computer code and numerical results in two dimensions. IEEE Trans. Antennas Propag. 35(2), 225–232 (1987). https://doi.org/10.1109/tap.1987.1144073

    Article  ADS  Google Scholar 

  21. J.L. Volakis, A. Chatterjee, L.C. Kempel, Review of the finite-element method for three-dimensional electromagnetic scattering. JOSA A 11(4), 1422–1433 (1994). https://doi.org/10.1364/JOSAA.11.001422

    Article  ADS  MathSciNet  Google Scholar 

  22. Y. Yi, B. Chen, D.-G. Fang, B.-H. Zhou, A new 2-D FDTD method applied to scattering by infinite objects with oblique incidence. IEEE Trans. Electromagn. Compat. 47(4), 756–762 (2005). https://doi.org/10.1109/temc.2005.860559

    Article  Google Scholar 

  23. J.-X. Liu, L. Ju, L.-H. Meng, Y.-J. Liu, Z.-G. Xu, H.-W. Yang, FDTD method for the scattered-field equation to calculate the radar cross-section of a three-dimensional target. J. Comput. Electron. 17(3), 1013–1018 (2018). https://doi.org/10.1007/s10825-018-1162-4

    Article  Google Scholar 

  24. A. Kusiek, J. Mazur, Analysis of scattering from arbitrary configuration of cylindrical objects using hybrid finite-difference mode-matching method. Prog. Electromagn. Res. 97, 105–127 (2009). https://doi.org/10.2528/pier09072804

    Article  Google Scholar 

  25. J. Jin, The Finite Element Method in Electromagnetics, 2nd edn. (Wiley, New York, 2002)

    MATH  Google Scholar 

  26. Z. Cui, Y. Han, C.Y. Li, W. Zhao, Efficient analysis of scattering from multiple 3-D cavities by means of a FE-BI-DDM method. Prog. Electromagn. Res. 116, 425–439 (2011). https://doi.org/10.2528/pier11042309

    Article  Google Scholar 

  27. Z.-W. Cui, Y.-P. Han, C.-Y. Li, Simulation of electromagnetic scattering by random discrete particles using a hybrid FE-BI-CBFM technique. Waves Random Complex Media 22(2), 234–248 (2012). https://doi.org/10.1080/17455030.2011.649808

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. P. Areias, J.N. Sikta, M.P. dos Santos, Finite element analysis of plasma dust-acoustic waves. Finite Elem. Anal. Des. 140, 38–49 (2018). https://doi.org/10.1016/j.finel.2017.10.010

    Article  MathSciNet  Google Scholar 

  29. B. Jazi, S. Golharani, E. Heidari-Semiromi, Long plasma column with a non-coaxial dielectric rod irradiated by an electromagnetic wave. IEEE Trans. Plasma Sci. 42(1), 62–72 (2014). https://doi.org/10.1109/tps.2013.2288984

    Article  ADS  Google Scholar 

  30. B.W. Neiswander, E. Matlis, T.C. Corke, Geometric optimization of a cylindrical plasma adaptive optics lens. AIAA J. 51(3), 657–664 (2013). https://doi.org/10.2514/1.J052029

    Article  ADS  Google Scholar 

  31. E.L. Dereniak, T.D. Dereniak, Geometrical and Trigonometric Optics (Cambridge University Press, Cambridge, 2008). https://doi.org/10.1017/cbo9780511755637

    Book  MATH  Google Scholar 

  32. W.M. Manheimer, Plasma reflectors for electronic beam steering in radar systems. IEEE Trans. Plasma Sci. 19(6), 1228–1234 (1991). https://doi.org/10.1109/27.125044

    Article  ADS  Google Scholar 

  33. F. Tanjia, R. Fedele, S.D. Nicola, D. Jovanovic, A. Mannan, The quantum plasma lens concept: a preliminary investigation. J. Plasma Phys. 79(4), 421–427 (2013). https://doi.org/10.1017/s0022377813000469

    Article  ADS  Google Scholar 

  34. M. Mortazavi, J. Urzay, A. Mani, Computational hydrodynamics and optical performance of inductively-coupled plasma adaptive lenses. Phys. Plasmas 22(6), 062110 (2015). https://doi.org/10.1063/1.4922477

    Article  ADS  Google Scholar 

  35. L. Dong, M. Petropoulou, D. Giannios, Extreme scattering events from axisymmetric plasma lenses. Mon. Not. R. Astron. Soc. 481(2), 2685–2693 (2018). https://doi.org/10.1093/mnras/sty2427

    Article  ADS  Google Scholar 

  36. N. Hodgson, H. Weber, Optical resonators: fundamentals, advanced concepts and applications. Opt. Photonics News 10, 53–54 (1997). https://doi.org/10.1007/978-1-4471-3595-1

    Article  Google Scholar 

  37. K. Staliunas, V.J. Sanchez-Morcillo, Transverse Patterns in Nonlinear Optical Resonators (Springer, Berlin, 2003). https://doi.org/10.1007/3-540-36416-1

    Book  Google Scholar 

  38. N. Hodgson, H. Weber, Laser Resonators and Beam Propagation: Fundamentals, Advanced Concepts, Applications. Springer Series in Optical Sciences (Springer, Berlin, 2005). https://doi.org/10.1007/b106789

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Golharani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golharani, S., Heidari-Semiromi, E., Jazi, B. et al. Plasma-covered long cylindrical non-isotropic dielectric lenses for targeted control of energy distribution. Eur. Phys. J. Plus 135, 766 (2020). https://doi.org/10.1140/epjp/s13360-020-00791-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00791-0

Navigation