Skip to main content
Log in

Investigation of optical properties of an overdense magnetized plasma lens in the interaction with high-intensity Gaussian laser pulses

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Self-focusing of a high-intensity circularly polarized Gaussian laser pulse by an overdense magnetized thin plasma lens is numerically investigated. The quasi-static axial magnetic field can be produced by inverse Faraday effect (IFE) mechanism in laser–plasma interaction. It has been shown that the inclusion of self-transparency, ponderomotive force, and magnetic field effects significantly affect the self-focusing properties. When the strength of the magnetic field increases, the self-focusing property is enhanced for the right and is weakened for the left-handed circularly polarized laser pulse. The ponderomotive force repels electrons from the axis and drives electron cavitation and as a result further lowers the plasma frequency. When the influence of the ponderomotive force is taken into account, self-focusing for both polarizations is strongly affected. The clear difference between the effects of the right- and left-handed circularly polarized pulses may lead us to use them for different experimental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Roth et al., Phys. Rev. Lett. 86, 436 (2001)

    Article  ADS  Google Scholar 

  2. V. Yu Bychenkov et al., Plasma Phys. Rep. 27, 1017 (2001)

    Article  ADS  Google Scholar 

  3. S. Atzeni et al., Nucl. Fusion. 42, L1 (2002)

    Article  ADS  Google Scholar 

  4. C. Thaury, H. George, F. Quere, R. Loch, J.-P. Geindre, P. Monot, P. Martin, Nat. Phys. 4, 631 (2008)

    Article  Google Scholar 

  5. B. Dromey, S.G. Rykovanov, D. Adams, R. Horlein, Y. Nomura, D.C. Carroll, P.S. Foster, S. Kar, K. Markey, P. McKenna, D. Neely, M. Geissler, G.D. Tsakiris, M. Zepf, Phys. Rev. Lett. 102, 225002 (2009)

    Article  ADS  Google Scholar 

  6. M. Behmke, D. An, C. der Brgge, M.Cerchez Rdel, D. Hemmers, M. Heyer, O. Jckel, M. Kbel, G.G. Paulus, G. Pretzler, A. Pukhov, M. Toncian, T. Toncian, O. Willi, Phys. Rev. Lett. 106, 185002 (2011)

    Article  ADS  Google Scholar 

  7. L.M. Chen, M. Kando, M.H. Xu, Y.T. Li, J. Koga, M. Chen, H. Xu, X.H. Yuan, Q.L. Dong, Z.M. Sheng, S.V. Bulanov, Y. Kato, J. Zhang, T. Tajima, Phys. Rev. Lett. 100, 045004 (2008)

    Article  ADS  Google Scholar 

  8. B.A. Remington et al., Science 248, 1488 (1999)

    Article  ADS  Google Scholar 

  9. S.V. Bulanov et al., Eur. Phys. J. D. 55, 483 (2009)

    Article  ADS  Google Scholar 

  10. T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  Google Scholar 

  11. E. Esarey, C.B. Schroeder, W.P. Leemans, Rev. Mod. Phys. 81, 1229 (2009)

    Article  ADS  Google Scholar 

  12. E.L. Clark et al., Phys. Rev. Lett. 84, 670 (2000)

    Article  ADS  Google Scholar 

  13. A. McPherson et al., Nature (London) 370, 631 (1994)

    Article  ADS  Google Scholar 

  14. S.P. Hatchett et al., Phys. Plasmas. 7, 2076 (2000)

    Article  ADS  Google Scholar 

  15. A. Maksimchuk, S. Gu, K. Flippo, D. Umstadter, V.Y. Bychenkov, Phys. Rev. Lett. 84, 4108 (2000)

    Article  ADS  Google Scholar 

  16. R.A. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000)

    Article  ADS  Google Scholar 

  17. B.M. Hegelich, B.J. Albright, J. Cobble, K. Flippo, S. Letzring, M. Paffett, H. Ruhl, J. Schreiber, R.K. Schulze, J.C. Fernandez, Nature (London) 439, 441 (2006)

    Article  ADS  Google Scholar 

  18. J.F.M. Borghesi, O. Willi, J. Phys. Conf. Ser. 58, 74 (2007)

  19. L. Robson et al., Nat. Phys. 3, 58 (2007)

    Article  Google Scholar 

  20. A. Macchi et al., Phys. Rev. Lett. 94, 165003 (2005)

    Article  ADS  Google Scholar 

  21. X. Zhang et al., Phys. Plasmas. 14, 073101 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. T.V. Liseikina et al., Appl. Phys. Lett. 91, 171502 (2007)

    Article  ADS  Google Scholar 

  23. O. Klimo et al., Phys. Rev. ST Accel. Beams. 11, 031301 (2008)

    Article  ADS  Google Scholar 

  24. A.P.L. Robinson et al., New J. Phys. 10, 013021 (2008)

    Article  ADS  Google Scholar 

  25. X.Q. Yan et al., Phys. Rev. Lett. 100, 135003 (2008)

    Article  ADS  Google Scholar 

  26. S.G. Rykovanov et al., New J. Phys. 10, 113005 (2008)

    Article  ADS  Google Scholar 

  27. B. Qiao et al., Phys. Rev. Lett. 102, 145002 (2009)

    Article  ADS  Google Scholar 

  28. A. Henig et al., Phys. Rev. Lett. 103, 245003 (2009)

    Article  ADS  Google Scholar 

  29. M.A. Varshney, B. Rathore, D. Varshney, Optik. 123, 67 (2012)

    Article  ADS  Google Scholar 

  30. Y. Katzir, Y. Ferber, J.R. Penano, R.F. Hubbard, P. Sprangle, A. Zigler, Opt. Express. 21, 5077 (2013)

    Article  ADS  Google Scholar 

  31. H.Y. Wang et al., Phys. Rev. Lett. 107, 265002 (2011)

    Article  ADS  Google Scholar 

  32. M. SupHur, V.V. Kulagin, H. Suk, Phys. Lett. A. 379, 700 (2015)

    Article  Google Scholar 

  33. B.K. Pandey, R.N. Agarwal, V.K. Tripathi, Phys. Lett. A. 349, 245 (2006)

    Article  ADS  Google Scholar 

  34. M. Ghorbanalilu, Phys. Plasmas. 17, 023111 (2010)

    Article  ADS  Google Scholar 

  35. A. Brodeur, S.L. Chin, J. Opt. Soc. Am. B. 16, 637 (1999)

    Article  ADS  Google Scholar 

  36. N. Gupta Devki, S. Hurin, Hwang Ilmoon, Suk Hyyong, J. Opt. Soc. Am. B. 24, 1155 (2007)

    Article  ADS  Google Scholar 

  37. Hu Yonghua, Zhuo Hui, J. Opt. Soc. Am. B. 26, B68 (2009)

    Article  Google Scholar 

  38. Y. Shou et al., Opt. Lett. 41, 139 (2016)

    Article  ADS  Google Scholar 

  39. B. Qiao, X.T. He, S.P. Zhu, Phys. Plasmas. 13, 053106 (2006)

  40. S. Eliezer, The interaction of high power lasers with plasmas (IOP Publishing Ltd, Bristol, 2002)

    Book  Google Scholar 

  41. A. Erdemir, C. Donnet, J. Phys. D. Appl. Phys. 39, R311 (2006)

    Article  Google Scholar 

  42. B. Aurand et al., J. Polym. Sci. Part B Polym. Phys. 51, 1355 (2013)

    Article  ADS  Google Scholar 

  43. M. Varshney Asthana, B. Rathorea, D. Varshney, J. Mod. Opt. 56, 1613 (2009)

    Article  ADS  Google Scholar 

  44. B.K. Pandey, V.K. Tripathi, Phys. Scr. 79, 025101 (2009)

    Article  ADS  Google Scholar 

  45. L.L. Ji et al., Phys. Rev. Lett. 103, 215005 (2009)

    Article  ADS  Google Scholar 

  46. W.L. Kruer, S.C. Wilks, Advance In plasma physics (Woodbury) (AIP, New York, 1994)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by INSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghorbanalilu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbanalilu, M., Shokri, B. Investigation of optical properties of an overdense magnetized plasma lens in the interaction with high-intensity Gaussian laser pulses. Appl. Phys. B 124, 38 (2018). https://doi.org/10.1007/s00340-018-6904-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6904-2

Navigation