Skip to main content
Log in

Microwave and optical photons entanglement in a hybrid electro-optomechanical system: effect of a mechanical plasmonic waveguide at high temperatures

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we describe a hybrid electro-optomechanical system consisting of a microwave resonator and an optical cavity which are coupled together by a plasmonic waveguide with a fixed side and another mechanically oscillating one. We show that a considerable entanglement can be obtained between optical and microwave photons at temperatures between \(T=10K\) and \(T=15K\) through our proposed system. Also, we show that it is possible to suppress effect of the temperature on entanglement between optical and microwave photons by a direct current voltage applied on both sides of the plasmonic waveguide. Furthermore, we show importance of the presence of optomechanical interaction in the system to obtain a significant entanglement between optical and microwave photons. Overall we show our system is an appropriate candidate to perform as a detector in detection of received microwave signals from an object with low reflectivity which is embedded in a bright thermal environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Morse, W. Hamilton, W. Johnson, E. Mauceli, M. McHugh, Phys. Rev. D 59, 062002 (1999)

    ADS  Google Scholar 

  2. C.Z. Zhou, P.F. Michelson, Phys. Rev. D 51, 2517 (1995)

    ADS  Google Scholar 

  3. M. Pinard, Y. Hadjar, A. Heidmann, Eur. Phys. J. D 7, 107 (1999)

    ADS  Google Scholar 

  4. C.H. Metzger, K. Karrai, Nature 432, 1002 (2004)

    ADS  Google Scholar 

  5. A. Asghari Nejad, H.R. Askari, H.R. Baghshahi, Phys. E Low Dimens. Sys. Nanostruct. 102, 83 (2018)

  6. A. Dalafi, M. Naderi, M. Soltanolkotabi, S. Barzanjeh, J. Phys. B At. Mol. Opt. Phys. 46, 235502 (2013)

    ADS  Google Scholar 

  7. F. Farman, A. Bahrampour, J. Opt. Soc. Am. B 30, 1898 (2013)

    ADS  Google Scholar 

  8. P. Rabl, Phys. Rev. Lett. 107, 063601 (2011)

    ADS  Google Scholar 

  9. T.P. Purdy, D. Brooks, T. Botter, N. Brahms, Z.Y. Ma, D.M. Stamper-Kurn, Phys. Rev. Lett. 105, 133602 (2010)

    ADS  Google Scholar 

  10. C. Law, Phys. Rev. A 51, 2537 (1995)

    ADS  Google Scholar 

  11. M. Bhattacharya, P. Meystre, Phys. Rev. Lett. 99, 073601 (2007)

    ADS  Google Scholar 

  12. G.S. Agarwal, S. Huang, Phys. Rev. A 81, 041803 (2010)

    ADS  Google Scholar 

  13. V. Giovannetti, D. Vitali, Phys. Rev. A 63, 023812 (2001)

    ADS  Google Scholar 

  14. Z. Yi, G. Li, S. Wu, Y. Yang, Opt. Exp. 22, 20060 (2014)

    ADS  Google Scholar 

  15. A. Asghari Nejad, H.R. Askari, H.R. Baghshahi, Superlatt. Microstruct. 113, 566 (2018)

    ADS  Google Scholar 

  16. S. Huang, G. Agarwal, Phys. Rev. A 79, 013821 (2009)

    ADS  Google Scholar 

  17. A. Asghari Nejad, H.R. Askari, H.R. Baghshahi, Opt. Laser Technol. 101, 279 (2018)

    ADS  Google Scholar 

  18. A. Asghari Nejad, H.R. Askari, H.R. Baghshahi, Chin. Phys. Lett. 34, 084205 (2017)

    ADS  Google Scholar 

  19. A. Asghari Nejad, H.R. Askari, H.R. Baghshahi, Appl. Opt. 56, 2816 (2017)

    ADS  Google Scholar 

  20. A. Asghari Nejad, H.R. Askari, H.R. Baghshahi, Laser Phys. 27, 035202 (2017)

    ADS  Google Scholar 

  21. A. Asghari Nejad, H.R. Askari, H.R. Baghshahi, J. Opt. Soc. Am. B 35, 2237 (2018)

    ADS  Google Scholar 

  22. R.X. Chen, L.T. Shen, S.B. Zheng, Phys. Rev. A 91, 022326 (2015)

    ADS  Google Scholar 

  23. D. Vitali, S. Gigan, A. Ferreira, H. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer, Phys. Rev. Lett. 98, 030405 (2007)

    ADS  Google Scholar 

  24. B. Chen, L.D. Wang, J. Zhang, A.P. Zhai, H.B. Xue, Phys. Lett. A 380, 798 (2016)

    ADS  MathSciNet  Google Scholar 

  25. C. Jiang, Y. Cui, K.D. Zhu, Opt. Express 22, 13773 (2014)

    ADS  Google Scholar 

  26. A. Asghari Nejad, H.R. Askari, H.R. Baghshahi, Superlatt. Microstruct. 111, 824 (2017)

    ADS  Google Scholar 

  27. W.Z. Zhang, J. Cheng, W.D. Li, L. Zhou, Phys. Rev. A 93, 063853 (2016)

    ADS  Google Scholar 

  28. S. Gigan, H. Böhm, M. Paternostro, F. Blaser, G. Langer, J. Hertzberg, K.C. Schwab, D. Bäuerle, M. Aspelmeyer, A. Zeilinger, Nature 444, 67 (2006)

    ADS  Google Scholar 

  29. G. Agarwal, S. Huang, Phys. Rev. A 93, 043844 (2016)

    ADS  Google Scholar 

  30. X.G. Zhan, L.G. Si, A.S. Zheng, X. Yang, J. Phys. B Atomic 46, 025501 (2013)

    ADS  Google Scholar 

  31. A.A. Nejad, H.R. Baghshahi, H.R. Askari, Eur. Phys. J. D 71, 267 (2017)

    ADS  Google Scholar 

  32. A. Asghari Nejad, H.R. Baghshahi, H.R. Askari, Laser Phys. 27, 115202 (2017)

    ADS  Google Scholar 

  33. E. Kim, J. Johansson, F. Nori, Phys. Rev. A 91, 033835 (2015)

    ADS  Google Scholar 

  34. M. Asjad, G. Agarwal, M. Kim, P. Tombesi, G. Di Giuseppe, D. Vitali, Phys. Rev. A 89, 023849 (2014)

    ADS  Google Scholar 

  35. J. Li, I.M. Haghighi, N. Malossi, S. Zippilli, D. Vitali, New J. Phys. 17, 103037 (2015)

    ADS  Google Scholar 

  36. C. Biancofiore, M. Karuza, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, D. Vitali, Phys. Rev. A 84, 033814 (2011)

    ADS  Google Scholar 

  37. R.W. Andrews, R.W. Peterson, T.P. Purdy, K. Cicak, R.W. Simmonds, C.A. Regal, K.W. Lehnert, Nat. Phys. 10, 321 (2014)

    Google Scholar 

  38. E. Gavartin, P. Verlot, T.J. Kippenberg, Nat. Nanotech. 7, 509 (2012)

    ADS  Google Scholar 

  39. F. Buters, M. Weaver, H. Eerkens, K. Heeck, S. De Man, D. Bouwmeester, Phys. Rev. A 94, 063813 (2016)

    ADS  Google Scholar 

  40. G.A. Peterson, F. Lecocq, K. Cicak, R.W. Simmonds, J. Aumentado, J.D. Teufel, Phys. Rev. X 7, 031001 (2017)

    Google Scholar 

  41. S. Barzanjeh, S. Guha, C. Weedbrook, D. Vitali, J.H. Shapiro, S. Pirandola, Phys. Rev. Lett. 114, 080503 (2015)

    ADS  Google Scholar 

  42. S. Barzanjeh, M. Abdi, G.J. Milburn, P. Tombesi, D. Vitali, Phys. Rev. Lett. 109, 130503 (2012)

    ADS  Google Scholar 

  43. S. Barzanjeh, D. Vitali, P. Tombesi, G. Milburn, Phys. Rev. A 84, 042342 (2011)

    ADS  Google Scholar 

  44. E.A. Sete, H. Eleuch, Phys. Rev. A 89, 013841 (2014)

    ADS  Google Scholar 

  45. D. Yu, A. Landra, L.C. Kwek, L. Amico, R. Dumke, New J. Phys. 20, 023031 (2018)

    ADS  Google Scholar 

  46. X.Z. Yuan, H.S. Goan, C.H. Lin, K.D. Zhu, Y.W. Jiang, New J. Phys. 10, 095016 (2008)

    ADS  Google Scholar 

  47. A. Asghari Nejad, H.R. Askari, H.R. Baghshahi, Phys. Rev. A 97, 053839 (2018)

    ADS  Google Scholar 

  48. T. Srivastava, R. Das, R. Jha, Plasmonics 8, 515 (2013)

    Google Scholar 

  49. J.H. Kang, H.G. Park, S.H. Kwon, Opt. Exp. 19, 13892 (2011)

    ADS  Google Scholar 

  50. D. Martin-Cano, A. González-Tudela, L. Martín-Moreno, F. Garcia-Vidal, C. Tejedor, E. Moreno, Phys. Rev. B 84, 235306 (2011)

    ADS  Google Scholar 

  51. J. Wang, X. Guan, Y. He, Y. Shi, Z. Wang, S. He, P. Holmström, L. Wosinski, L. Thylen, D. Dai, Opt. Exp. 19, 838 (2011)

    ADS  Google Scholar 

  52. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic press, Cambridge, 2014)

    MATH  Google Scholar 

  53. R.E. Bellman, R.E. Kalaba, Selected Papers on Mathematical Trends in Control Theory (Dover Publications, Mineola, 1964)

    MATH  Google Scholar 

  54. D. Vitali, P. Tombesi, M. Woolley, A. Doherty, G. Milburn, Phys. Rev. A 76, 042336 (2007)

    ADS  Google Scholar 

  55. J.Q. Zhang, S. Zhang, J.H. Zou, L. Chen, W. Yang, Y. Li, M. Feng, Opt. Exp. 21, 29695 (2013)

    ADS  Google Scholar 

  56. S. Zhang, J.Q. Zhang, J. Zhang, C.W. Wu, W. Wu, P.X. Chen, Opt. Exp. 22, 28118 (2014)

    ADS  Google Scholar 

  57. M. Poot, H.S. van der Zant, Phys. Rep. 511, 273 (2012)

    ADS  Google Scholar 

  58. S. Mancini, V. Giovannetti, D. Vitali, P. Tombesi, Phys. Rev. Lett. 88, 120401 (2002)

    ADS  Google Scholar 

  59. P.C. Ma, J.Q. Zhang, Y. Xiao, M. Feng, Z.M. Zhang, Phys. Rev. A 90, 043825 (2014)

    ADS  Google Scholar 

  60. J.Q. Zhang, Y. Li, M. Feng, Y. Xu, Phys. Rev. A 86, 053806 (2012)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Asghari Nejad.

Appendix: Details on the Coulomb’s interaction

Appendix: Details on the Coulomb’s interaction

In this appendix we present details of calculation of the Coulomb’s interaction between the two sides of MOPW and how it is related to the applied DC voltage between them. We consider for each side a corresponding capacitance \(C_\mathrm{i}\) and an electric potential \(V_\mathrm{i}\) (\(i=1\), 2). Therefore, the Coulomb’s interaction between the two sides of MOPW can be written as [22, 59, 60]

$$\begin{aligned} H_\mathrm{C}= & {} \frac{-C_\mathrm{1}V_\mathrm{1}C_\mathrm{2}V_\mathrm{2}}{4\pi \epsilon _\mathrm{0}|d_\mathrm{0}+x|}, \end{aligned}$$
(39)

where \(d_0\) is the free distance between the two sides of MOPW and x accounts for the displacement of the mechanically oscillating side. If we consider that x is much smaller than \(d_0\), i.e., \(d_0\gg x\), Tailor series of \(H_\mathrm{C}\) in Eq. 39 gives

$$\begin{aligned} H_\mathrm{C}= & {} \frac{-C_\mathrm{1}V_\mathrm{1}C_\mathrm{2}V_\mathrm{2}}{4\pi \epsilon _\mathrm{0}d_\mathrm{0}}\left[ 1-\frac{x}{d_\mathrm{0}}+(\frac{x}{d_\mathrm{0}})^2+\dots \right] . \end{aligned}$$
(40)

One can rewrite Eq. 40 as the following form

$$\begin{aligned}&H_\mathrm{C}\approx \frac{-C_\mathrm{1}V_\mathrm{1}C_\mathrm{2}V_\mathrm{2}}{4\pi \epsilon _\mathrm{0}d_\mathrm{0}}\left[ \left( \frac{x}{d_\mathrm{0}}-\frac{1}{2}\right) ^2+\frac{3}{4}\right] . \end{aligned}$$
(41)

In this paper we have \(x=\sqrt{\frac{\hbar }{m \omega _\mathrm{m}}}Q\). Therefore, after omitting constant terms from Eq. 41, one can obtain

$$\begin{aligned}&H_\mathrm{C}\approx \frac{-\hbar C_\mathrm{1}V_\mathrm{1}C_\mathrm{2}V_\mathrm{2}}{4\pi \epsilon _\mathrm{0}m\omega _\mathrm{m}d_\mathrm{0}^3}\left[ \left( Q-\frac{d_0}{2}\sqrt{\frac{m\omega _\mathrm{m}}{\hbar }}\right) ^2\right] . \end{aligned}$$
(42)

If we consider applied DC potential between the two sides of MOPW as \(V_\mathrm{DC}\) and a corresponding capacitance of C (indeed the stationary capacitance between two sides of MOPW), and change the reference of the potential energy of the system, one can obtain the following form of Eq. 42

$$\begin{aligned} H_\mathrm{C}= & {} \hbar \Omega \left( Q-\frac{d_0}{2}\sqrt{\frac{m\omega _\mathrm{m}}{\hbar }}\right) ^2, \end{aligned}$$
(43)

where \(\Omega =\frac{C^2V^2}{4\pi \epsilon _\mathrm{0}m\omega _\mathrm{m}d_0^3}\) is defined as the Coulomb’s interaction strength. Without losing generality, we change the zero point of measuring Q (and hence x) and we consider \((Q-\frac{d_0}{2}\sqrt{\frac{m\omega _\mathrm{m}}{\hbar }})\rightarrow Q\). Therefore, from Eq. 43 one can obtain

$$\begin{aligned} H_\mathrm{C}=\hbar \Omega Q^2. \end{aligned}$$
(44)

In this paper, chosen parameters for Coulomb’s interaction are as \(C=1\)pF and \(d_0=1\mu \)m.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejad, A.A. Microwave and optical photons entanglement in a hybrid electro-optomechanical system: effect of a mechanical plasmonic waveguide at high temperatures. Eur. Phys. J. Plus 135, 772 (2020). https://doi.org/10.1140/epjp/s13360-020-00789-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00789-8

Navigation