Skip to main content
Log in

Optical properties of a two-dimensional GaAs quantum dot under strain and magnetic field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

It is well known that the use of the strain plays an important role in the material properties. Strain effect is a potential tool for altering the atomic positions and defect formations. It can adjust the electronic structures and lattice vibrations. It can also affect the phase transition of the structure, the physical and chemical properties. Consequently, in this paper, we have studied the effects of strain and magnetic field on optical properties of a two-dimensional quantum dot. The Hamiltonian of our system consists of the Bychkov–Rashba, Dresselhaus and strain-dependent terms. Using the diagonalization method, we have obtained the energy levels and wave functions of the system and thereby the refractive index changes and absorption coefficient in the presence of different strains. According to the results, it is found that an anti-crossing magnetic field is 7.37 T and it does not depend on the strain. Also, the energy transition increases with enhancement in the strain and decreases with increase in the magnetic field. The refractive index changes and absorption coefficient shifts toward lower (higher) energies for negative (positive) strain. The energy transition has lower values for negative strain at fixed magnetic field and confinement length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Tshipa, Indian J. Phys. 86, 807 (2012)

    ADS  Google Scholar 

  2. M. Lu, X.J. Yang, S.S. Perry, J.W. Rabalais, Appl. Phys. Lett. 80, 2096 (2002)

    ADS  Google Scholar 

  3. P. Kalpana, K. Jayakumar, P. Nithiananthi, Int. J. Comput. Mater. Sci. Eng. 4, 1550018 (2015)

    Google Scholar 

  4. V. Lozovski, V. Piatnytsia, J. Comput. Theor. Nanosci. 8, 1 (2011)

    Google Scholar 

  5. W. Xie, Phys. Status Solidi B 245, 101 (2008)

    ADS  Google Scholar 

  6. R. Khordad, J. Magn. Magn. Mater. 449, 510 (2018)

    ADS  Google Scholar 

  7. Z. Avazzadeh, H. Bahramiyan, Opt. Quantum Electron. 52, 179 (2020)

    Google Scholar 

  8. H. Bahramiyan, Indian J. Phys. (2020). https://doi.org/10.1007/s12648-019-01524-4

    Article  Google Scholar 

  9. A. Ghosh, M. Ghosh, J. Phys. Chem. Soilds 112, 252 (2018)

    ADS  Google Scholar 

  10. R. Khordad, H. Bahramiyan, J. Appl. Phys. 115, 124314 (2014)

    ADS  Google Scholar 

  11. M.I. Dyakonov, V.Y. Kachorovskii, Fiz. Tekh. Poluprovodn. 20, 178 (1986)

    Google Scholar 

  12. Y.A. Bychkov, E.I. Rashba, J. Phys. C 17, 6039 (1984)

    ADS  Google Scholar 

  13. R. Khordad, H.R. Rastegar Sedehi, Solid State Commun. 269, 118 (2018)

    ADS  Google Scholar 

  14. A. Siabi-Garjan, R. Hassanzadeh, Eur. Phys. J. Plus 133, 419 (2018)

    Google Scholar 

  15. M. Eshghi, R. Sever, S.M. Ikhdair, Eur. Phys. J. Plus 134, 155 (2019)

    Google Scholar 

  16. I.F.I. Mikhail, I.M.M. Ismail, M.M. El Shafee, Indian J. Phys. 90, 1115 (2016)

    ADS  Google Scholar 

  17. R. Khordad, Superlatt. Microstrcut. 110, 146 (2017)

    ADS  Google Scholar 

  18. R. Khordad, H. Bahramiyan, Commun. Theor. Phys. 65, 87 (2016)

    ADS  Google Scholar 

  19. R. Khordad, H. Bahramiyan, Commun. Theor. Phys. 62, 283 (2014)

    ADS  Google Scholar 

  20. Y. Baba, M.S. Bertin, Physica E 116, 113769 (2020)

    Google Scholar 

  21. L. Aderras, A. Bah, E. Feddi, F. Dujardin, C.A. Duque, Physica E 89, 119 (2017)

    ADS  Google Scholar 

  22. H.R. Rastegar Sedehi, R. Khordad, Solid State Commun. 313, 113911 (2020)

    Google Scholar 

  23. C.Y. Cai, C.L. Zhao, J.L. Xiao, Int. J. Nanosci. 12, 1350016 (2013)

    Google Scholar 

  24. Z.X. Li, J.L. Xiao, J. At. Mol. Sci. 2, 74 (2011)

    Google Scholar 

  25. H.R. Rastegar Sedehi, Eur. Phys. J. B 93, 14 (2020)

    ADS  MathSciNet  Google Scholar 

  26. N. Li, K.X. Guo, S. Shao, G.H. Liu, Opt. Mater. 34, 1459 (2012)

    ADS  Google Scholar 

  27. G. Dresselhaus, Phys. Rev. 100, 580 (1955)

    ADS  Google Scholar 

  28. E.I. Rashba, Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960)

    Google Scholar 

  29. D. Najafi, B. Vaseghi, G. Rezaei, R. Khordad, Eur. Phys. J. Plus 133, 302 (2018)

    Google Scholar 

  30. D. Najafi, B. Vaseghi, G. Rezaei, R. Khordad, Eur. Phys. J. Plus 134, 17 (2019)

    Google Scholar 

  31. R. Khordad, B. Vaseghi, Int. J. Quantum Chem. 119, e25994 (2019)

    Google Scholar 

  32. G.I. Bir, G.E. Pikus, Fiz. Tverd. Tela. 3, 3050 (1961)

    Google Scholar 

  33. I. Vurgftman, R. Meyer, J. Appl. Phys. 89, 5815 (2001)

    ADS  Google Scholar 

  34. V. Fock, Z. Phys. 47, 446 (1928)

    ADS  Google Scholar 

  35. C.G. Darwin, Proc. Camb. Philos. Soc. 27, 86 (1931)

    ADS  Google Scholar 

  36. R. Khordad, Solid State Sci. 12, 1253 (2010)

    ADS  Google Scholar 

  37. G. Wang, K. Guo, Physica E 28, 14 (2005)

    ADS  Google Scholar 

  38. R. Khordad, J. Opt. 42, 83 (2013)

    Google Scholar 

  39. S. Unlu, I. Karabulut, H. Safak, Physica E 33, 319 (2006)

    ADS  Google Scholar 

  40. D. Ahn, S.L. Chuang, IEEE J. Quantum Electron. 23, 2196 (1987)

    ADS  Google Scholar 

  41. R.W. Boyd, Nonlinear Optics (Academic Press, New York, 2003)

    Google Scholar 

  42. G.Q. Hai, F.M. Peeters, J.T. Devreese, Phys. Rev. B 42, 11063 (1990)

    ADS  Google Scholar 

  43. S. Adachi, J. Appl. Phys. 58, R1 (1985)

    ADS  Google Scholar 

  44. H. Bahramiyan, Indian J. Phys. (2018). https://doi.org/10.1007/s12648-018-1302-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Servatkhah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Servatkhah, M., Pourmand, R. Optical properties of a two-dimensional GaAs quantum dot under strain and magnetic field. Eur. Phys. J. Plus 135, 754 (2020). https://doi.org/10.1140/epjp/s13360-020-00773-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00773-2

Navigation