Skip to main content
Log in

Strain effect on the third-harmonic generation of a two-dimensional GaAs quantum dot in the presence of magnetic field and spin–orbit interaction

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The strain effect on the third-harmonic generation (THG) of a two-dimensional GaAs quantum dot has been investigated within the effective mass approximation. For this purpose, first, we have calculated the energy levels and wave function of the system in the presence of Bychkov–Rashba and Dresselhaus terms and strain-dependent term by accomplish the diagonalization method. Then we have computed the THG by an analytical expression. The results illustrate that: (1) there is a maximum in TGH for a special magnetic field corresponding to the anti-crossing magnetic field (Bac). (2) The Bac is not depended on the strain. (3) There is a minimum in TGH at special strain, and we can control the THG by strain and magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S Liang, W Xie and H Shen Opt. Commun. 284 5818 (2011)

    Article  ADS  Google Scholar 

  2. G Wang and Q Guo Physica B403 37 (2008)

    Article  ADS  Google Scholar 

  3. R Khordad and B Mirhosseini Opt. Commun.285 1233 (2012)

    Article  ADS  Google Scholar 

  4. R Khordad and H Bahramiyan Commun. Theor. Phys.62 283 (2014)

    Article  ADS  Google Scholar 

  5. V Fock Z Phys.47 446 (1928)

  6. C G Darwin Proc. Camb. Philos. Soc. 27 86 (1931)

  7. R D Sousa and S Das Sarma Phys. Rev B68 155330 (2003)

    Article  ADS  Google Scholar 

  8. M V Rodriguez, A Puente and L Serra Phys. Rev. B69 85306 (2004)

    Article  Google Scholar 

  9. C F Destefani, S E Ulloa and G E Marques Phys. Rev. B69 125302 (2004)

    Article  ADS  Google Scholar 

  10. C F Destefani, S E Ulloa and G E Marques Phys. Rev. B70 205315 (2004)

    Article  ADS  Google Scholar 

  11. M V Rodriguez, A Puente, L Serra and E Lipparini Phys. Rev. B66 235322 (2002)

    Article  ADS  Google Scholar 

  12. C F Destefani and S E Ulloa Phys. Rev. B71 161303(R) (2005)

    Article  ADS  Google Scholar 

  13. O Voskoboynikov, C P Lee and O. Tretyak Phys. Rev. B63 165306 (2001)

    Article  ADS  Google Scholar 

  14. W H Kuan, C S Tang and W Xu J. Appl. Phys. 95 6368 (2004)

    Article  ADS  Google Scholar 

  15. M V Rodrıguez, A Puente and L Serra Phys. Rev. B69 153308 (2004)

    Article  ADS  Google Scholar 

  16. A V Chaplik and L I Magarill Phys. Rev. Lett. 94 126402 (2006)

    Article  ADS  Google Scholar 

  17. O Voskoboynikov, O Bauga, C P Lee and O Tretyak J. Appl. Phys.94 5891 (2003)

    Article  ADS  Google Scholar 

  18. J H Van Vleck Phys. Rev.57 426 (1940)

    Article  ADS  Google Scholar 

  19. I L Aleiner and V I Falko Phys. Rev. Lett. 87 256801 (2001)

    Article  ADS  Google Scholar 

  20. M V Rodrıguez Phys. Rev. B70 033306 (2004)

    Article  ADS  Google Scholar 

  21. E N Bulgakov and A F Sadreev JETP Lett.73 505 (2001)

    Article  ADS  Google Scholar 

  22. E Tsitsishvili, G S Lozano and A O Gogolin Phys. Rev. B70 115316 (2004)

    Article  ADS  Google Scholar 

  23. S Debald and C Emary Phys. Rev. Lett. 94 226803 (2005)

    Article  ADS  Google Scholar 

  24. S Tarucha, D G Austing, T Honda, R J Van der Haged and L P Kouwenhoven Phys. Rev. Lett. 77 3613 (1996)

    Article  ADS  Google Scholar 

  25. E I Rashba Fiz. Tverd. Tela (Leningrad)2 1224 (1960)

    Google Scholar 

  26. Y A Bychkov E I Rashba J. Phys. C17 6039 (1984)

    Article  ADS  Google Scholar 

  27. G Dresselhaus Phys. Rev.100 580 (1955)

    Article  ADS  Google Scholar 

  28. M I Dyakonov and V.Y. Kachorovskii, Fiz. Tekh. Poluprovodn. (S-Peterburg)20 178 (1986)

  29. G I Bir and G E Pikus Fiz. Tverd. Tela (Leningrad)3 3050 (1961)

    Google Scholar 

  30. I Vurgftman and R Meyer J. App. Phys.89 5815 (2001)

    Article  ADS  Google Scholar 

  31. S Baskoutas E Paspalakis and A F Terzis J. Phys. Condens. Matter.19 395024 (2007)

    Article  Google Scholar 

  32. G Rezaei B Vaseghi R Khordad and H Azadi Kenary Physica E431853 (2011)

    Google Scholar 

  33. I Karabulut H Safak and M Tomak J. Phys. D Appl. Phys.41 155104 (2008)

    Article  ADS  Google Scholar 

  34. R W Boyd Nonlinear Optics, 2nd edn. (Academic Press) (2003)

  35. B Li K X Guo Z L Liu and Y B Zheng Phys. Lett. A372 1337 (2008)

    Article  ADS  Google Scholar 

  36. J B Miller et al. Phys. Rev. Lett. 90 76807 (2003)

    Article  ADS  Google Scholar 

  37. W Knap et al. Phys. Rev. B53 3912 (1996)

    Article  ADS  Google Scholar 

  38. H Bahramiyan Indian J. Phys. (2018). https://doi.org/10.1007/s12648-018-1302-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Bahramiyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahramiyan, H. Strain effect on the third-harmonic generation of a two-dimensional GaAs quantum dot in the presence of magnetic field and spin–orbit interaction. Indian J Phys 94, 789–796 (2020). https://doi.org/10.1007/s12648-019-01525-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01525-4

Keywords

PACS Nos.

Navigation