Skip to main content
Log in

Natural convection of dusty nanofluids within a concentric annulus

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This study expounds the numerical simulation of two-phase dusty nanofluid flow in an annulus surrounded by two concentric cylinders. The flow is generated in the annulus because of the temperature difference between the heated inner wall and cold outer wall. An appropriate variable transform which transfigures the annular domain into a rectangular one is introduced in this study. The governing equations for the nanofluid phase and dusty phase in transformed coordinates are solved by employing finite difference technique. The momentous results to analyze the flow and heat transfer are blazoned for physically significant parameters, namely, the nanoparticles volume fraction, the Rayleigh number, the aspect ratio, the density ratio and the dusty parameter. Results establish that the flow strength can be increased by incrementing the nanoparticles volume fraction, the Rayleigh number and the aspect ratio. Besides, heat transfer can be enhanced at the both walls by incrementing the nanoparticles volume fraction and the Rayleigh number and can be diminished by incrementing the density ratio and the dusty parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. T.H. Kuehn, R.J. Goldstein, An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders. J. Fluid Mech. 74, 695 (1976)

    Article  ADS  MATH  Google Scholar 

  2. T.H. Kuehn, R.J. Goldstein, An experimental study of natural convection heat transfer in concentric and eccentric horizontal cylindrical annuli. J. Heat Transf. 100, 635 (1978)

    Article  Google Scholar 

  3. C. Shu, K.S. Yeo, Q. Yao, An efficient approach to simulate natural convection in arbitrarily eccentric annuli by vorticity-stream function formulation. Numer. Heat Transf. Part A Appl. 38, 739 (2000)

    Article  ADS  Google Scholar 

  4. C.H. Cho, K.S. Chang, K.H. Park, Numerical simulation of natural convection in concentric and eccentric horizontal cylindrical annuli. J. Heat Transf. 104, 624 (1982)

    Article  ADS  Google Scholar 

  5. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles. Am. Soc. Mech. Eng. Fluids Eng. Div. FED 231, 99 (1995)

    Google Scholar 

  6. M. Sheikholeslami, A. Arabkoohsar, I. Khan, A. Shafee, Z. Li, Impact of Lorentz forces on Fe3O4-water ferrofluid entropy and exergy treatment within a permeable semi annulus. J. Clean. Prod. 221, 885 (2019)

    Article  Google Scholar 

  7. T.A. Alkanhal, M. Sheikholeslami, A. Arabkoohsar, R. Haq, A. Shafee, Z. Li, I. Tlili, Simulation of convection heat transfer of magnetic nanoparticles including entropy generation using CVFEM. Int. J. Heat Mass Transf. 136, 146 (2019)

    Article  Google Scholar 

  8. F. Selimefendigil, H.F. Öztop, Pulsating nanofluids jet impingement cooling of a heated horizontal surface. Int. J. Heat Mass Transf. 69, 54 (2014)

    Article  Google Scholar 

  9. M. Sheikholeslami, R. Ellahi, Electrohydrodynamic nanofluid hydrothermal treatment in an enclosure with sinusoidal upper wall. Appl. Sci. 5, 294 (2015)

    Article  Google Scholar 

  10. M. Sheikholeslami, M.K. Sadoughi, Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. Int. J. Heat Mass Transf. 116, 909 (2018)

    Article  Google Scholar 

  11. A.I. Alsabery, M.A. Ismael, A.J. Chamkha, I. Hashim, Effects of two-phase nanofluid model on MHD mixed convection in a lid-driven cavity in the presence of conductive inner block and corner heater. J. Therm. Anal. Calorim. 135, 729 (2019)

    Article  Google Scholar 

  12. E. Abu-Nada, Z. Masoud, A. Hijazi, Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. Int. Commun. Heat Mass Transf. 35, 657 (2008)

    Article  Google Scholar 

  13. E. Abu-Nada, Effects of variable viscosity and thermal conductivity of Al2O3-water nanofluid on heat transfer enhancement in natural convection. Int. J. Heat Fluid Flow 30, 679 (2009)

    Article  Google Scholar 

  14. G.A. Sheikhzadeh, M. Arbaban, M.A. Mehrabian, Laminar natural convection of Cu-water nanofluid in concentric annuli with radial fins attached to the inner cylinder. Heat Mass Transf. Und Stoffuebertragung 49, 391 (2013)

    Article  ADS  Google Scholar 

  15. M. Sheikholeslami, R. Ellahi, M. Hassan, S. Soleimani, A study of natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder. Int. J. Numer. Methods Heat Fluid Flow 24, 1906 (2014)

    Article  Google Scholar 

  16. A. Abdulkadhim, On simulation of the natural convection heat transfer between circular cylinder and an elliptical enclosure filled with nanofluid [part I: the effect of mhd and internal heat generation/absorption]. Math. Model. Eng. Probl. 6, 599 (2019)

    Article  Google Scholar 

  17. M. Habibi Matin, I. Pop, Natural convection flow and heat transfer in an eccentric annulus filled by Copper nanofluid. Int. J. Heat Mass Transf. 61, 353 (2013)

    Article  Google Scholar 

  18. S.M. Seyyedi, M. Dayyan, S. Soleimani, E. Ghasemi, Natural convection heat transfer under constant heat flux wall in a nanofluid filled annulus enclosure. Ain Shams Eng. J. 6, 267 (2015)

    Article  Google Scholar 

  19. N.C. Roy, Natural convection of nanofluids in a square enclosure with different shapes of inner geometry. Phys. Fluids 30, 113605 (2018)

    Article  Google Scholar 

  20. N.C. Roy, Flow and heat transfer characteristics of a nanofluid between a square enclosure and a wavy wall obstacle. Phys. Fluids 31, 082005 (2019)

    Article  ADS  Google Scholar 

  21. M. Sheikholeslami, M. Jafaryar, A. Shafee, H. Babazadeh, Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin. J. Clean. Prod. 261, 121206 (2020)

    Article  Google Scholar 

  22. N. Apazidis, Temperature distribution and heat transfer in a particle-fluid flow past a heated horizontal plate. Int. J. Multiph. Flow 16, 495 (1990)

    Article  MATH  Google Scholar 

  23. S. Siddiqa, M.A. Hossain, S.C. Saha, Two-phase natural convection flow of a dusty fluid. Int. J. Numer. Methods Heat Fluid Flow 25, 1542 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Siddiqa, M.N. Abrar, M.A. Hossain, M. Awais, Dynamics of two-phase dusty fluid flow along a wavy surface. Int. J. Nonlinear Sci. Numer. Simul. 17, 185 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. P.T. Manjunatha, B.J. Gireesha, B.C. Prasannakumara, Thermal analysis of conducting dusty fluid flow in a porous medium over a stretching cylinder in the presence of non-uniform source/sink. Int. J. Mech. Mater. Eng. 9, 1 (2014)

    Article  Google Scholar 

  26. D.C. Dalal, N. Datta, S.K. Mukherjea, Unsteady natural convection of a dusty fluid in an infinite rectangular channel. Int. J. Heat Mass Transf. 41, 547 (1998)

    Article  MATH  Google Scholar 

  27. B.J. Gireesha, C.S. Bagewadi, B.C. Prasannakumar, Pulsatile flow of an unsteady dusty fluid through rectangular channel. Commun. Nonlinear Sci. Numer. Simul. 14, 2103 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. M. Sheikholeslami, M. Jafaryar, E. Abohamzeh, A. Shafee, H. Babazadeh, Energy and entropy evaluation and two-phase simulation of nanoparticles within a solar unit with impose of new turbulator. Sustain. Energy Technol. Assess. 39, 100727 (2020)

    Google Scholar 

  29. S. Naramgari, C. Sulochana, MHD flow of dusty nanofluid over a stretching surface with volume fraction of dust particles. Ain Shams Eng. J. 7, 709 (2016)

    Article  Google Scholar 

  30. W. Ibrahim, D. Gamachu, Dusty Nanofluid Past a Centrifugally Stretching Surface. Math. Probl. Eng. 2020, (2020)

  31. B.J. Gireesha, B. Mahanthesh, K.L. Krupalakshmi, Hall effect on two-phase radiated flow of magneto-dusty-nanoliquid with irregular heat generation/consumption. Results Phys. 7, 4340 (2017)

    Article  ADS  Google Scholar 

  32. R.S.R. Gorla, B.J. Gireesha, B. Singh, MHD Flow and Heat Transfer of Dusty Nanofluid Embedded in Porous Medium Over an Exponentially Stretching Sheet. J. Nanofluids 4, 449 (2015)

    Article  Google Scholar 

  33. S. Siddiqa, N. Begum, M.A. Hossain, R.S.R. Gorla, A.A.A.A. Al-Rashed, Two-phase natural convection dusty nanofluid flow. Int. J. Heat Mass Transf. 118, 66 (2018)

    Article  Google Scholar 

  34. G. Rudinger, Fundamentals of Gas-Particle Flow (Elsevier, Amsterdam, 1980)

    Google Scholar 

  35. S.K. Pal, S. Bhattacharyya, I. Pop, Effect of solid-to-fluid conductivity ratio on mixed convection and entropy generation of a nanofluid in a lid-driven enclosure with a thick wavy wall. Int. J. Heat Mass Transf. 127, 885 (2018)

    Article  Google Scholar 

  36. M. Esmaeilpour, M. Abdollahzadeh, Free convection and entropy generation of nanofluid inside an enclosure with different patterns of vertical wavy walls. Int. J. Therm. Sci. 52, 127 (2012)

    Article  Google Scholar 

  37. C.C. Cho, C.L. Chen, C.K. Chen, Natural convection heat transfer performance in complex-wavy-wall enclosed cavity filled with nanofluid. Int. J. Therm. Sci. 60, 255 (2012)

    Article  Google Scholar 

  38. N.C. Roy, R.S.R. Gorla, Natural convection of a chemically reacting fluid in a concentric annulus filled with non-Darcy porous medium. Int. J. Heat Mass Transf. 127, 513 (2018)

    Article  Google Scholar 

  39. C. Shu, Y.D. Zhu, Efficient computation of natural convection in a concentric annulus between an outer square cylinder and an inner circular cylinder. Int. J. Numer. Methods Fluids 38, 429 (2002)

    Article  ADS  MATH  Google Scholar 

  40. C. Wang, C. Chen, Forced convection in a wavy-wall channel. Int. J. Heat Mass Transf. 45, 2587 (2002)

    Article  MATH  Google Scholar 

  41. X. Yang, S.C. Kong, Numerical study of natural convection in a horizontal concentric annulus using smoothed particle hydrodynamics. Eng. Anal. Bound. Elem. 102, 11 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Litan Kumar Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, L.K., Bala, S.K. & Roy, N.C. Natural convection of dusty nanofluids within a concentric annulus. Eur. Phys. J. Plus 135, 732 (2020). https://doi.org/10.1140/epjp/s13360-020-00759-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00759-0

Navigation