Skip to main content
Log in

Effects of two-phase nanofluid model on MHD mixed convection in a lid-driven cavity in the presence of conductive inner block and corner heater

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper investigates a steady mixed convection in a lid-driven square cavity subjected to an inclined magnetic field and heated by corner heater with an inserted square solid block. Water–Al\(_2\)O\(_3\) nanofluid fills the cavity based on Buongiorno’s two-phase model. A corner heater is configured in the left lower corner of the cavity by maintaining 40% of the bottom and vertical walls at constant hot temperature. The top horizontal wall is moving and maintained at a constant low temperature. The remainder walls are thermally insulated. The governing equations are solved numerically using the finite element method. The governing parameters are the nanoparticles volume fraction (\(0 \le \phi \le 0.04\)), Reynolds number (\(1 \le Re \le 500\)), Richardson number (\(0.01 \le Ri \le 100\)), Hartmann number (\(0 \le Ha \le 50\)) and the size of the inner solid (\(0.1 \le D \le 0.7\)). The other parameters: the Prandtl number, Lewis number, Schmidt number, ratio of Brownian to thermophoretic diffusivity and the normalized temperature parameter, are fixed at \(Pr=4.623\), \(Le=3.5\times 10^{5}\), \(Sc=3.55\times 10^{4}\), \(N_{\mathrm{BT}}=1.1\) and \(\delta =155\), respectively. The inclination of the magnetic field is fixed at \(\gamma =\frac{\pi }{4}\). Results show that at low Reynolds number, the increase in nanoparticles loading more the 2% becomes useless. It is also found that a big size of the solid block can augment heat transfer in the case of high values of both the Reynolds and Richardson numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

\(\overrightarrow{\mathbf{B }}\) :

Applied magnetic field

\({\mathbf B} \) :

Magnitude of magnetic field

\(C_{p}\) :

Specific heat capacity

d :

Side length of inner block

\(d_{\mathrm{f}}\) :

Diameter of the base fluid molecule

\(d_{\mathrm{p}}\) :

Diameter of the nanoparticle

D :

Dimensionless side length of the inner block, \(D=d/L\)

\(D_{\mathrm{B}}\) :

Brownian diffusion coefficient

\(D_{\mathrm{B0}}\) :

Reference Brownian diffusion coefficient

\(D_{\mathrm{T}}\) :

Thermophoretic diffusivity coefficient

\(D_{\mathrm{T0}}\) :

Reference thermophoretic diffusion coefficient

\({\mathbf {g}}\) :

Gravitational acceleration

Ha :

Hartmann number

Gr :

Grashof number

k :

Thermal conductivity

\(K_{\mathrm{r}}\) :

Square wall to nanofluid thermal conductivity ratio, \(K_{\mathrm{r}}=k_{\mathrm{w}}/k_{\mathrm{nf}}\)

L :

Width and height of enclosure

Le :

Lewis number

\(N_{\mathrm{BT}}\) :

Ratio of Brownian to thermophoretic diffusivity

\(\overline{Nu}\) :

Average Nusselt number

Pr :

Prandtl number

Re :

Reynolds number

\(Re_{\mathrm{B}}\) :

Brownian motion Reynolds number

Ri :

Richardson number, \(Ri=Gr/{Re}^2\)

Sc :

Schmidt number

T :

Temperature

\(T_0\) :

Reference temperature (310 K)

\(T_{\mathrm{fr}}\) :

Freezing point of the base fluid (273.15 K)

\({\mathbf {v}} \), \({\mathbf {V}} \) :

Velocity and dimensionless velocity vector, respectively

\(u_{\mathrm{B}}\) :

Brownian velocity of the nanoparticle

x, y and X, Y :

Space coordinates and dimensionless space coordinates

\(\alpha \) :

Thermal diffusivity

\(\gamma \) :

Inclination angle of magnetic field

\(\beta \) :

Thermal expansion coefficient

\(\delta \) :

Normalized temperature parameter

\(\theta \) :

Dimensionless temperature

\(\mu \) :

Dynamic viscosity

\(\nu \) :

Kinematic viscosity

\(\rho \) :

Density

\(\sigma \) :

Electrical conductivity

\(\varphi \) :

Solid volume fraction

\(\varphi ^*\) :

Normalized solid volume fraction

\(\phi \) :

Average solid volume fraction

b :

Bottom wall

c :

Cold

f :

Base fluid

h :

Hot

nf:

Nanofluid

p :

Solid nanoparticles

t :

Top wall

w :

Solid wall

References

  1. Torrance K, Davis R, Eike K, Gill P, Gutman D, Hsui A, Lyons S, Zien H. Cavity flows driven by buoyancy and shear. J Fluid Mech. 1972;51(2):221.

    Article  Google Scholar 

  2. Ghia U, Ghia KN, Shin C. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys. 1982;48(3):387.

    Article  Google Scholar 

  3. Prasad AK, Koseff JR. Combined forced and natural convection heat transfer in a deep lid-driven cavity flow. Int J Heat Fluid Flow. 1996;17(5):460.

    Article  Google Scholar 

  4. Khanafer KM, Chamkha AJ. Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium. Int J Heat Mass Transf. 1999;42(13):2465.

    Article  CAS  Google Scholar 

  5. Ismael MA, Pop I, Chamkha AJ. Mixed convection in a lid-driven square cavity with partial slip. Int J Therm Sci. 2014;82:47.

    Article  Google Scholar 

  6. Ismael MA. Numerical solution of mixed convection in a lid-driven cavity with arc-shaped moving wall. Eng Comput. 2017;34(3):869.

    Article  Google Scholar 

  7. Das SK, Choi SUS, Yu W, Pradeep T. Nanofluids: science and technology. Hoboken: Wiley; 2008.

    Google Scholar 

  8. Tiwari RK, Das MK. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf. 2007;50(9):2002.

    Article  CAS  Google Scholar 

  9. Ismael MA, Abu-Nada E, Chamkha AJ. Mixed convection in a square cavity filled with CuO-water nanofluid heated by corner heater. Int J Mech Sci. 2017;133:42.

    Article  Google Scholar 

  10. Sheikholeslami M, Shamlooei M, Moradi R. Fe\(_3\)O\(_4\)-ethylene glycol nanofluid forced convection inside a porous enclosure in existence of coulomb force. J Mol Liq. 2018;249:429.

    Article  CAS  Google Scholar 

  11. Abu-Nada E, Chamkha AJ. Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid. Eur J Mech B/Fluids. 2010;29(6):472.

    Article  Google Scholar 

  12. Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manage. 2011;52(1):789.

    Article  CAS  Google Scholar 

  13. Sheikholeslami M, Shehzad S. Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. Int J Heat Mass Transf. 2018;120:1200.

    Article  CAS  Google Scholar 

  14. Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf. 2004;47(24):5181.

    Article  CAS  Google Scholar 

  15. Buongiorno J. Convective transport in nanofluids. J Heat Transfer. 2006;128(3):240.

    Article  Google Scholar 

  16. Sheikholeslami M, Gorji-Bandpy M, Ganji D, Soleimani S. Thermal management for free convection of nanofluid using two phase model. J Mol Liq. 2014;194:179.

    Article  CAS  Google Scholar 

  17. Sheremet MA, Pop I. Mixed convection in a lid-driven square cavity filled by a nanofluid: Buongiorno’s mathematical model. Appl Math Comput. 2015;266:792.

    Google Scholar 

  18. Garoosi F, Rohani B, Rashidi MM. Two-phase mixture modeling of mixed convection of nanofluids in a square cavity with internal and external heating. Powder Technol. 2015;275:304.

    Article  CAS  Google Scholar 

  19. Esfandiary M, Mehmandoust B, Karimipour A, Pakravan HA. Natural convection of \(\text{ Al }_2\text{ O }_3\)-water nanofluid in an inclined enclosure with the effects of slip velocity mechanisms: Brownian motion and thermophoresis phenomenon. Int J Therm Sci. 2016;105:137.

    Article  CAS  Google Scholar 

  20. Motlagh SY, Soltanipour H. Natural convection of Al\(_2\)O\(_3\)-water nanofluid in an inclined cavity using Buongiorno’s two-phase model. Int J Therm Sci. 2017;111:310.

    Article  CAS  Google Scholar 

  21. Nkurikiyimfura I, Wang Y, Pan Z. Heat transfer enhancement by magnetic nanofluidsa review. Renew Sustain Energy Rev. 2013;21:548.

    Article  CAS  Google Scholar 

  22. Pirmohammadi M, Ghassemi M. Effect of magnetic field on convection heat transfer inside a tilted square enclosure. Int Commun Heat Mass Transfer. 2009;36(7):776.

    Article  CAS  Google Scholar 

  23. Mahmoudi AH, Pop I, Shahi M. Effect of magnetic field on natural convection in a triangular enclosure filled with nanofluid. Int J Therm Sci. 2012;59:126.

    Article  CAS  Google Scholar 

  24. Ghasemi B, Aminossadati S, Raisi A. Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int J Therm Sci. 2011;50(9):1748.

    Article  CAS  Google Scholar 

  25. Kefayati GR. Effect of a magnetic field on natural convection in an open cavity subjugated to water/alumina nanofluid using lattice Boltzmann method. Int Commun Heat Mass Transfer. 2013;40:67.

    Article  CAS  Google Scholar 

  26. Sheikholeslami M, Bandpy MG, Ellahi R, Zeeshan A. Simulation of mhd cuo-water nanofluid flow and convective heat transfer considering Lorentz forces. J Magn Magn Mater. 2014;369:69.

    Article  CAS  Google Scholar 

  27. Selimefendigil F, Öztop HF. Natural convection and entropy generation of nanofluid filled cavity having different shaped obstacles under the influence of magnetic field and internal heat generation. J Taiwan Inst Chem Eng. 2015;56:42.

    Article  CAS  Google Scholar 

  28. Chamkha AJ, Ismael MA. Magnetic field effect on mixed convection in lid-driven trapezoidal cavities filled with a Cu-water nanofluid with an aiding or opposing side wall. J Therm Sci Eng Appl. 2016;8(3):031009.

    Article  CAS  Google Scholar 

  29. Sivaraj C, Sheremet M. Mhd natural convection in an inclined square porous cavity with a heat conducting solid block. J Magn Magn Mater. 2017;426:351.

    Article  CAS  Google Scholar 

  30. Sheikholeslami M. Influence of magnetic field on nanofluid free convection in an open porous cavity by means of lattice Boltzmann method. J Mol Liq. 2017;234:364.

    Article  CAS  Google Scholar 

  31. Chamkha A, Rashad A, Armaghani T, Mansour M. Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu–water nanofluid. J Therm Anal Calorim. 2018;132(2):1291.

    Article  CAS  Google Scholar 

  32. Sheikholeslami M, Seyednezhad M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf. 2018;120:772.

    Article  CAS  Google Scholar 

  33. Sheikholeslami M. Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. J Mol Liq. 2018;249:1212.

    Article  CAS  Google Scholar 

  34. Sheikholeslami M. CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. J Mol Liq. 2018;249:921.

    Article  CAS  Google Scholar 

  35. House JM, Beckermann C, Smith TF. Effect of a centered conducting body on natural convection heat transfer in an enclosure. Numer Heat Transf. 1990;18(2):213.

    Article  Google Scholar 

  36. Ha MY, Jung MJ, Kim YS. Numerical study on transient heat transfer and fluid flow of natural convection in an enclosure with a heat-generating conducting body. Numer Heat Transf Part A Appl. 1999;35(4):415.

    Article  CAS  Google Scholar 

  37. Zhao FY, Liu D, Tang GF. Conjugate heat transfer in square enclosures. Heat Mass Transf. 2007;43(9):907.

    Article  Google Scholar 

  38. Mahmoodi M, Sebdani SM. Natural convection in a square cavity containing a nanofluid and an adiabatic square block at the center. Superlattices Microstruct. 2012;52(2):261.

    Article  CAS  Google Scholar 

  39. Mahapatra PS, De S, Ghosh K, Manna NK, Mukhopadhyay A. Heat transfer enhancement and entropy generation in a square enclosure in the presence of adiabatic and isothermal blocks. Numer Heat Transf Part A Appl. 2013;64(7):577.

    Article  CAS  Google Scholar 

  40. Ismael MA, Ghalib HS. Double diffusive natural convection in a partially layered cavity with inner solid conductive body, Sci Iran. 2017. https://doi.org/10.24200/SCI.2017.4349

  41. Alsabery AI, Siddheshwar PG, Saleh H, Hashim I. Transient free convective heat transfer in nanoliquid-saturated porous square cavity with a concentric solid insert and sinusoidal boundary condition. Superlattices Microstruct. 2016;100:1006.

    Article  CAS  Google Scholar 

  42. Alsabery AI, Ismael MA, Chamkha AJ, Hashim I. Mixed convection of Al\(_2\)O\(_3\)-water nanofluid in a double lid-driven square cavity with a solid inner insert using Buongiorno’s two-phase model. Int J Heat Mass Transf. 2018;119:939.

    Article  CAS  Google Scholar 

  43. Maxwell JC. A treatise on electricity and magnetism, vol. II. Clarendon: Oxford University Press; 1904.

    Google Scholar 

  44. Oztop HF, Al-Salem K, Pop I. MHD mixed convection in a lid-driven cavity with corner heater. Int J Heat Mass Transf. 2011;54(15):3494.

    Article  Google Scholar 

  45. Ho C, Liu W, Chang Y, Lin C. Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int J Therm Sci. 2010;49(8):1345.

    Article  CAS  Google Scholar 

  46. Sheikhzadeh GA, Dastmalchi M, Khorasanizadeh H. Effects of nanoparticles transport mechanisms on Al\(_2\)O\(_3\)-water nanofluid natural convection in a square enclosure. Int J Therm Sci. 2013;66:51.

    Article  CAS  Google Scholar 

  47. Corcione M, Cianfrini M, Quintino A. Two-phase mixture modeling of natural convection of nanofluids with temperature-dependent properties. Int J Therm Sci. 2013;71:182.

    Article  CAS  Google Scholar 

  48. Chon CH, Kihm KD, Lee SP, Choi SU. Empirical correlation finding the role of temperature and particle size for nanofluid (\(\text{Al}_2\text{O}_3\)) thermal conductivity enhancement. Appl Phys Lett. 2005;87(15):3107.

    Article  CAS  Google Scholar 

  49. Bergman TL, Incropera FP. Introduction to heat transfer, 6\({\rm th}\) edition. New York: Wiley; 2011.

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Universiti Kebangsaan Malaysia (UKM) research Grant DIP-2017-010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Alsabery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsabery, A.I., Ismael, M.A., Chamkha, A.J. et al. Effects of two-phase nanofluid model on MHD mixed convection in a lid-driven cavity in the presence of conductive inner block and corner heater. J Therm Anal Calorim 135, 729–750 (2019). https://doi.org/10.1007/s10973-018-7377-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7377-6

Keywords

Navigation