Skip to main content
Log in

Transition path dynamics across rough inverted parabolic potential barrier

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Transition path dynamics have been widely studied in chemical, physical, and technological systems. Mostly, the transition path dynamics is obtained for smooth barrier potentials, for instance, generic inverse-parabolic shapes. We here present analytical results for the mean transition path time, the distribution of transition path times, the mean transition path velocity, and the mean transition path shape in a rough inverted parabolic potential function under the driving of Gaussian white noise. These are validated against extensive simulations using the forward flux sampling scheme in parallel computations. We observe how precisely the potential roughness, the barrier height, and the noise intensity contribute to the particle transition in the rough inverted barrier potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Compare this situation with the variation of the mean first-passage time in piecewise linear potentials in [74, 75].

References

  1. E. Pollak, P. Talkner, Chaos 15, 026116 (2005)

    ADS  MathSciNet  Google Scholar 

  2. S. Arrhenius, Z. Phys, Chem. (Leipzig) 4, 216 (1889)

    Google Scholar 

  3. H. Eyring, J. Chem. Phys. 3, 107 (1935)

    ADS  Google Scholar 

  4. B.C. Garrett, Theor. Chem. Acc. 103, 200 (2000)

    Google Scholar 

  5. E. Wigner, Trans. Faraday Soc. 34, 29 (1938)

    Google Scholar 

  6. G.A. Petersson, Theor. Chem. Acc. 103, 190 (1995)

    Google Scholar 

  7. H.A. Kramers, Physica 7, 284 (1940)

    ADS  MathSciNet  Google Scholar 

  8. A. Einstein, Ann. Phys. (Leipzig) 322, 549 (1905)

    ADS  Google Scholar 

  9. M. Smoluchowski, Ann. Phys. (Leipzig) 21, 756 (1906)

    Google Scholar 

  10. P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)

    ADS  Google Scholar 

  11. H.S. Chung, K. McHale, J.M. Louis, W.A. Eaton, Science 335, 981 (2012)

    ADS  Google Scholar 

  12. H.S. Chung, W.A. Eaton, Nature 502, 685 (2013)

    ADS  Google Scholar 

  13. H.S. Chung, S. Piana-Agostinetti, D.E. Shaw, W.A. Eaton, Science 349, 1504 (2015)

    ADS  Google Scholar 

  14. K. Neupane, A.P. Manuel, M.T. Woodside, Nat. Phys. 12, 700 (2016)

    Google Scholar 

  15. F. Sturzenegger, F. Zosel, E.D. Holmstrom, K.J. Buholzer, D.E. Makarov, D. Nettels, B. Schuler, Nat. Commun. 9, 4708 (2018)

    ADS  Google Scholar 

  16. K. Neupane, D.A.N. Foster, D.R. Dee, H. Yu, F. Wang, M.T. Woodside, Science 352, 239 (2016)

    ADS  Google Scholar 

  17. P. Cossio, G. Hummer, A. Szabo, J. Chem. Phys. 148, 123309 (2018)

    ADS  Google Scholar 

  18. D.E. Makarov, J. Chem. Phys. 143, 194103 (2015)

    ADS  Google Scholar 

  19. D. Chandler, J. Chem. Phys. 68, 2959 (1978)

    ADS  Google Scholar 

  20. C. Dellago, P.G. Bolhuis, D. Chandler, J. Chem. Phys. 108, 9236 (1998)

    ADS  Google Scholar 

  21. J.F. Lu, J. Nolen, Probab. Theory Rel. 161, 195 (2015)

    Google Scholar 

  22. A.T. Hawk, S.S.M. Konda, D.E. Makarov, J. Chem. Phys. 139, 064101 (2013)

    ADS  Google Scholar 

  23. C. Dellago, P.G. Bolhuis, P.L. Geissler, Adv. Chem. Phys. 123, 1 (2002)

    Google Scholar 

  24. P.G. Bolhuis, D. Chandler, C. Dellago, P.L. Geissler, Ann. Rev. Phys. Chem. 53, 291 (2002)

    ADS  Google Scholar 

  25. A.M. Berezhkovskii, G. Hummer, S.M. Bezrukov, Phys. Rev. Lett. 97, 020601 (2006)

    ADS  Google Scholar 

  26. N. Krishna, Phys. Rev. Lett. 109, 068102 (2012)

    Google Scholar 

  27. H.S. Chung, W.A. Eaton, Curr. Opin. Struct. Biol. 48, 30 (2018)

    Google Scholar 

  28. K. Neupane, A.P. Manuel, J. Lambert, M.T. Woodside, J. Phys. Chem. Lett. 6, 1005 (2015)

    Google Scholar 

  29. N.Q. Hoffer, M.T. Woodside, Curr. Opin. Struct. Biol. 53, 68 (2019)

    Google Scholar 

  30. P.C. Bressloff, S.D. Lawley, J. Phys. A Math. Theor. 48, 225001 (2015)

    ADS  Google Scholar 

  31. A. Godec, R. Metzler, Sci. Rep. 6, 20349 (2016)

    ADS  Google Scholar 

  32. A. Godec, R. Metzler, Phys. Rev. X 6, 041037 (2016)

    Google Scholar 

  33. A. Godec, R. Metzler, J. Phys. A 50, 084001 (2017)

    ADS  MathSciNet  Google Scholar 

  34. O. Pulkkinen, R. Metzler, Phys. Rev. Lett. 110, 198101 (2013)

    ADS  Google Scholar 

  35. D. Grebenkov, R. Metzler, G. Oshanin, Phys. Chem. Chem. Phys. 20, 16393 (2018)

    Google Scholar 

  36. D. Grebenkov, R. Metzler, G. Oshanin, Commun. Chem. 1, 96 (2018)

    Google Scholar 

  37. D. Grebenkov, R. Metzler, G. Oshanin, New J. Phys. 21, 122001 (2019)

    Google Scholar 

  38. Y. Xu, H. Li, H.Y. Wang, W.T. Jia, X.L. Yue, J. Kurths, J. Appl. Mech. Trans. ASME 84, 091004 (2017)

    ADS  Google Scholar 

  39. A.M. Berezhkovskii, L. Dagdug, S.M. Bezrukov, J. Phys. Chem. B 121, 5455 (2017)

    Google Scholar 

  40. J. Deepika, J. Phys. A Math. Theor. 51, 285001 (2018)

    Google Scholar 

  41. A.M. Berezhkovskii, D.E. Makarov, J. Chem. Phys. 148, 201102 (2018)

    ADS  Google Scholar 

  42. N.Q. Hoffer, K. Neupane, A.G.T. Pyo, M.T. Woodside, Proc. Natl. Acad. Sci. USA 116, 8125 (2019)

    Google Scholar 

  43. H. Yu, A.N. Gupta, X. Liu, K. Neupane, A.M. Btigley, I. Sosova, M.T. Woodside, Proc. Natl. Acad. Sci. USA 109, 14452 (2012)

    ADS  Google Scholar 

  44. M. Laleman, E. Carlon, H. Orland, J. Chem. Phys. 147, 214103 (2017)

    ADS  Google Scholar 

  45. E. Pollak, Phys. Chem. Chem. Phys. 18, 28872 (2016)

    Google Scholar 

  46. A.M. Berezhkovskii, L. Dagdug, S.M. Bezrukov, J. Phys. Chem. B 123, 3786 (2019)

    Google Scholar 

  47. W.K. Kim, R.R. Netz, J. Chem. Phys. 143, 224108 (2015)

    ADS  Google Scholar 

  48. H.S. Chung, I.V. Gopich, Phys. Chem. Chem. Phys. 16, 18644 (2014)

    Google Scholar 

  49. E. Medina, R. Satija, D.E. Makarov, J. Phys. Chem. B 122, 11400 (2018)

    Google Scholar 

  50. R. Satija, D.E. Makarov, J. Phys. Chem. B 123, 802 (2019)

    Google Scholar 

  51. R. Satija, A. Das, D.E. Makarov, J. Chem. Phys. 147, 152707 (2017)

    ADS  Google Scholar 

  52. E. Carlon, H. Orland, T. Sakaue, C. Vanderzande, J. Phys. Chem. B 122, 11186 (2018)

    Google Scholar 

  53. J. Gladrow, R. Crivellari, F. Ritort, U.F. Keyser, Nat. Commun. 10, 55 (2019)

    ADS  Google Scholar 

  54. H. Janovjak, H. Knaus, D.J. Muller, J. Am. Chem. Soc. 129, 246 (2007)

    Google Scholar 

  55. P. Scheidler, W. Kob, K. Binder, J. Phys. Chem. B 108, 6673 (2004)

    Google Scholar 

  56. T.S. Chow, Phys. Lett. A 342, 148 (2005)

    ADS  Google Scholar 

  57. J. Wang, J. Onuchic, P. Wolynes, Phys. Rev. Lett. 76, 4861 (1996)

    ADS  Google Scholar 

  58. R. Zwanzig, Proc. Natl. Acad. Sci. USA 85, 2029 (1998)

    ADS  Google Scholar 

  59. Y.G. Li, Y. Xu, J. Kurths, X.L. Yue, Chaos 27, 103102 (2017)

    ADS  MathSciNet  Google Scholar 

  60. Y.G. Li, Y. Xu, J. Kurths, Phys. Rev. E 96, 052121 (2017)

    Google Scholar 

  61. Y.G. Li, Y. Xu, J. Kurths, X.L. Yue, Phys. Rev. E 94, 042222 (2016)

    ADS  Google Scholar 

  62. Y.G. Li, Y. Xu, J. Kurths, Phys. Rev. E 99, 052203 (2019)

    ADS  Google Scholar 

  63. M. Hu, J.D. Bao, Phys. Rev. E 97, 062143 (2018)

    ADS  Google Scholar 

  64. Y.G. Li, Y. Xu, J. Kurths, J.Q. Duan, Chaos 29, 101102 (2019)

    ADS  MathSciNet  Google Scholar 

  65. D. Mondal, P.K. Ghosh, D.S. Ray, J. Chem. Phys. 130, 074703 (2009)

    ADS  Google Scholar 

  66. H. Li, Y. Xu, J. Kurths, X.L. Yue, Eur. Phys. J. B 92, 76 (2019)

    ADS  Google Scholar 

  67. R.J. Allen, P.B. Warren, P.R.T. Wolde, Phys. Rev. Lett. 94, 018104 (2005)

    ADS  Google Scholar 

  68. H. Risken, The Fokker–Planck Equation: Methods of Solution and Applications (Springer, Berlin, 1996)

    MATH  Google Scholar 

  69. B.W. Zhang, D. Jasnow, J. Chem. Phys. 126, 074504 (2007)

    ADS  Google Scholar 

  70. B.G. Wenslwy, S. Batey, F.A.C. Bone, Z.M. Chan, N.R. Tumelty, A. Steward, L.G. Kwa, A. Borgia, J. Clarke, Nature 463, 685 (2010)

    ADS  Google Scholar 

  71. G. Hummer, J. Chem. Phys. 120, 516 (2004)

    ADS  Google Scholar 

  72. A.G.T. Pyo, N.Q. Hoffer, K. Neupane, M.T. Woodside, J. Chem. Phys. 149, 115101 (2018)

    ADS  Google Scholar 

  73. C.W. Gardiner, Handbook of Stochastic Methods (Springer, Berlin, 1985)

    Google Scholar 

  74. V.V. Palyulin, R. Metzler, J. Stat. Mech. 2012, L03001 (2012)

    Google Scholar 

  75. V.V. Palyulin, R. Metzler, J. Phys. A 47, 032002 (2014)

    ADS  Google Scholar 

  76. T. Mattos, C. Mejía-Monasterio, R. Metzler, G. Oshanin, Phys. Rev. E 86, 031143 (2012)

    ADS  Google Scholar 

  77. V.V. Palyulin, A.V. Chechkin, R. Metzler, Proc. Natl. Acad. Sci. USA 111, 2931 (2014)

    ADS  Google Scholar 

  78. V.V. Palyulin, A.V. Chechkin, R. Klages, R. Metzler, J. Phys. A 49, 394002 (2016)

    MathSciNet  Google Scholar 

  79. V.V. Palyulin, G. Blackburn, M.A. Lomholt, N. Watkins, R. Metzler, R. Klages, A.V. Chechkin, New J. Phys. 21, 103028 (2019)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF of China (11772255, 11902118), the Research Funds for Interdisciplinary subject, NWPU, the Fundamental Research Funds for the Central Universities, China and Shaanxi Province Project for Distinguished Young Scholars, as well as by Deutsche Forschungsgemeinschaft (ME 1535/7-1). RM acknowledges the Foundation for Polish Science (Fundacja na rzecz Nauki Polskiej) for support within an Alexander von Humboldt Honorary Polish Research Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xu.

Appendix A: The transition path probability density function

Appendix A: The transition path probability density function

According to Eq. (1), the reactive trajectories from \(x_\mathrm{A}\) to \(x_\mathrm{B}\) should satisfy the stochastic differential equation [21]

$$\begin{aligned} \mathrm {d}x=\left( f(x)+\frac{2D\mathrm{d}\phi _\mathrm{B}(x)/\mathrm {d}x}{\phi _\mathrm{B}(x)}\right) \mathrm{d}t+\sqrt{2D}\mathrm{d}W(t), \end{aligned}$$
(A1)

where W(t) is the unit Wiener process, \(\phi _\mathrm{B}(x)\) is the committor function as shown in Eq. (11). Then, the probability density function for the transition paths, \(P_{\mathrm {TP}}(x,t)\) from \(x_\mathrm{A}\) to \(x_\mathrm{B}\), satisfies

$$\begin{aligned} \frac{{\partial } P_{\mathrm {TP}}(x,t)}{{\partial } t}=-\frac{{\partial }}{{\partial } x} \left( f(x)+\frac{2D\mathrm{d}\phi _\mathrm{B}(x)/\mathrm {d}x}{\phi _\mathrm{B}(x)}\right) P_{\mathrm {TP}}(x,t)+D\frac{ {\partial }^2}{{\partial } x^2}P_{\mathrm {TP}}(x,t). \end{aligned}$$
(A2)

With \(f(x)=-\mathrm{d}V(x)/\mathrm {d}x=-(1/D)\mathrm{d}G(x)/\mathrm {d}x\),

(A3)

Defining \(M(x)=\exp \left( G(x)/D\right) \), we obtain

(A4)

Hence, Eq. (A2) is recast in the Smoluchowski equation [72].

(A5)

This is Eq. (9) in the main text.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Xu, Y., Li, Y. et al. Transition path dynamics across rough inverted parabolic potential barrier. Eur. Phys. J. Plus 135, 731 (2020). https://doi.org/10.1140/epjp/s13360-020-00752-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00752-7

Navigation