Skip to main content
Log in

Hyperbolic symmetries, inflaton–phantom cosmology, and inflation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Using a hyperbolic complex plane, we study the realization of the underlying hyperbolic symmetry as an internal symmetry that enables the unification of scalar fields of cosmological and particle physics interest. Such an unification is achieved along the universal prescriptions used in physics, avoiding the use of concepts such as Euclideanization, non-canonical Lagrangians, and hidden structures that have appeared in other approaches. The scalar potentials constructed within the present scheme are bounded from below, and the realization of the spontaneous symmetry breaking of the aforementioned non-compact symmetry is studied. The profiles of these potentials with exact/broken hyperbolic symmetry replicate qualitative aspects of those ones used in inflationary models, and then, a detailed comparison is made. Moreover, the homotopy constraints of the topology induced on the corresponding vacuum manifolds restrict the existence of topological defects associated with continuous symmetries, allowing only those defects associated with discrete symmetries; the consistency of these results is contrasted with current observational tests from the LIGO/Virgo collaboration and terrestrial experiments based on a synchronized network of atomic magnetometers. At the end, the non-relativistic limit of the model is identified with a hyperbolic version of the nonlinear Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In fact, one should expect that both fields \(\phi \) and \(\phi ^{*}\)are consistently transformed.

  2. Generalized commutative rings allow us to define objects that are invariant under both circular and hyperbolic rotations; see Concluding remarks.

  3. A.H.-A. thanks Gabriel Germán for useful discussions on this issue.

  4. Hybrid inflationary models encompass properties of chaotic inflation with \(V(\phi )=\frac{m^2\phi ^2}{2}\) and the usual theory with a spontaneous symmetry breaking mechanism described by the potential \(V(\sigma )=\frac{1}{4\lambda }\left( M^2-\lambda \sigma ^2\right) \).

References

  1. H.F.M. Goner, On the history of unified field theories. Living Rev. Relativ. 7, 2 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  2. H.F.M. Goner, On the history of unified field theories. Living Rev. Rel. 17, 5 (2014)

    Article  Google Scholar 

  3. R. Cartas-Fuentevilla, O. Meza-Aldama, Spontaneous symmetry breaking, and strings defects in hypercomplex gauge theories. Eur. Phys. J. C 76(2), 98 (2016)

    Article  ADS  Google Scholar 

  4. R. Cartas-Fuentevilla, A.J.C. Juarez-Dominguez, Quantum field theory of a hyper-complex scalar field on a commutative ring. arXiv:1705.07981 (2017)

  5. V.V. Kassandrov, Biquaternion electrodynamics and Weyl–Cartan geometry of space-time. Grav. Cosmol. 1, 216 (1995)

    ADS  Google Scholar 

  6. V.V. Kassandrov, Algebrodynamics in complex space-time and the complex-quaternionic origin of Minkowski geometry. Grav. Cosmol. 11, 354 (2005)

    ADS  MathSciNet  Google Scholar 

  7. V.V. Kassandrov, J.A. Rizcallah, Maxwell, Yang-Mills, Weyl and eikonal fields defined by any null shear-free congruence. Int. J. Geom. Methods Mod. Phys. 14(02), 1750031 (2016)

    Article  MathSciNet  Google Scholar 

  8. V.V. Asadov, O.V. Kechkin, Quantum theory with arrow of time: symmetry breaking and non-local spinor realization with non-commuting operators of energy and decay. J. Phys. Conf. Ser. 380, 012011 (2012)

    Article  Google Scholar 

  9. D.H. Lyth, A. Riotto, Particle models of inflation and the cosmological density perturbations. Phys. Rep. 314, 1 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Perez-Lorenzana, M. Montesinos, T. Matos, Unification of cosmological scalar fields. Phys. Rev. D 77, 063507 (2008)

    Article  ADS  Google Scholar 

  11. D. Fermi, M. Gengo, L. Pizzocchero, On the necessity of phantom fields for solving the horizon problem in scalar cosmologies. Universe 5(3), 76 (2019)

    Article  ADS  Google Scholar 

  12. J.M. Cline, S. Jeon, G.D. Moore, The phantom menaced: constraints on low energy-effective ghosts. Phys. Rev. D 70, 043543 (2004)

    Article  ADS  Google Scholar 

  13. S. Nojiri, S.D. Odintsov, Quantum de Sitter cosmology and phantom matter. Phys. Lett. B 562, 147 (2003)

    Article  ADS  Google Scholar 

  14. V.V. Kisil, Starting with the group \(SL_2(R) \). Not. AMS 54, 1458 (2007)

    MathSciNet  Google Scholar 

  15. S. Ulrych, Considerations on the hyperbolic complex Klein–Gordon equation. J. Math. Phys. 51, 063510 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Dine, Problems of naturalness: some lessons from string theory. arXiv:hep-th/9207045

  17. B. Rai, G. Senjanovic, Gravity and the domain wall problem. Phys. Rev. D 49, 2729 (1994)

    Article  ADS  Google Scholar 

  18. R.D. Poodiack, K.J. LeClair, Theorems of algebra for the perplexes. Coll. Math. J. 40(5), 322–335 (2009)

    Article  MathSciNet  Google Scholar 

  19. S. Ulrych, Relativistic quantum physics with hyperbolic numbers. Phys. Lett. B 625, 313 (2005). [arXiv:hep-th/9904170]

    Article  ADS  MathSciNet  Google Scholar 

  20. R. Penrose, The Road to Reality, Chapter 28.9 (J. Cape, London, 2004)

    Google Scholar 

  21. J.F. Dufaux, G. Felder, L. Kofman, O. Navros, Gravity waves from tachyonic preheating after hybrid inflation. J. Cosmol. Astropart. Phys. 03, 001 (2009)

    Article  ADS  Google Scholar 

  22. M. Pospelov, S. Pustelny, M.P. Ledbetter, D.F. JacksonKimball, W. Gawlik, D. Budker, Detecting domain walls of axionlike models using terrestrial experiments. Phys. Rev. Lett. 110, 021803 (2013)

    Article  ADS  Google Scholar 

  23. LIGO Scientific Collaboration, Virgo Collaboration, Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors. Phys. Rev. Lett. 112, 131101 (2014)

    Article  ADS  Google Scholar 

  24. W. Greiner, J. Reinhardt, Field Quantization (Springer, Berlin, 1996)

    Book  Google Scholar 

  25. J. Kocik, Int. J. Theor. Phys. 38, 8 (1999)

    Article  MathSciNet  Google Scholar 

  26. A. Linde, Hybrid inflation. Phys. Rev. D 49, 748 (1994)

    Article  ADS  Google Scholar 

  27. M.E. Laycock, P. Millington, Energy-parity from bicomplex algebra. arXiv:1801.08068 (2018)

Download references

Acknowledgements

This work was supported by the Sistema Nacional de Investigadores (SNI, Mexico) and the Vicerrectoría de Investigación y Estudios de Posgrado (VIEP-BUAP). Graphics have been made using Mathematica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Escalante-Hernandez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cartas-Fuentevilla, R., Escalante-Hernandez, A., Herrera-Aguilar, A. et al. Hyperbolic symmetries, inflaton–phantom cosmology, and inflation. Eur. Phys. J. Plus 135, 529 (2020). https://doi.org/10.1140/epjp/s13360-020-00513-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00513-6

Navigation