Skip to main content
Log in

A new approach to the Thomas–Fermi boundary-value problem

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Given the Thomas–Fermi equation \(\sqrt{x}\varphi ''=\varphi ^{3 \over 2}\), this paper changes first the dependent variable by defining \(y(x) \equiv \sqrt{x \varphi (x)}\). The boundary conditions require that y(x) must vanish at the origin as \(\sqrt{x}\), whereas it has a fall-off behaviour at infinity proportional to the power \({1 \over 2}(1-\chi )\) of the independent variable x, \(\chi \) being a positive number. Such boundary conditions lead to a 1-parameter family of approximate solutions in the form \(\sqrt{x}\) times a ratio of finite linear combinations of integer and half-odd powers of x. If \(\chi \) is set equal to 3, in order to agree exactly with the asymptotic solution of Sommerfeld, explicit forms of the approximate solution are obtained for all values of x. They agree exactly with the Majorana solution at small x, and remain very close to the numerical solution for all values of x. Remarkably, without making any use of series, our approximate solutions achieve a smooth transition from small-x to large-x behaviour. Eventually, the generalized Thomas–Fermi equation that includes relativistic, non-extensive and thermal effects is studied, finding approximate solutions at small and large x for small or finite values of the physical parameters in this equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. If one looks for solutions of Eq. (1.2) in the form \(\varphi (x)=A x^{\alpha }\), one finds the consistency condition

    $$\begin{aligned} {\alpha (\alpha -1)\over \sqrt{A}}=x^{(3+\alpha )\over 2}, \end{aligned}$$

    which implies that \(\alpha =-3\), and hence \({12 \over \sqrt{A}}=1\), which is solved by \(A=144\).

References

  1. L.H. Thomas, The calculations of atomic fields. Proc. Cambridge Philos. Soc. 23, 542–598 (1927)

    Article  ADS  Google Scholar 

  2. E. Fermi, Eine statistiche methode zur bestimmung einiger eigenschaften des atoms und ihre anwendung auf die theories des periodischen systems der elemente. Z. Phys. 48, 73–79 (1928)

    Article  ADS  Google Scholar 

  3. S. Esposito, E. Majorana Jr., A. van der Merwe, E. Recami, Ettore Majorana: Notebooks in Theoretical Physics (Kluwer, Dordrecht, 2003)

    Book  Google Scholar 

  4. E. Di Grezia, S. Esposito, Fermi, Majorana and the statistical model of atoms. Found. Phys. 34, 1431–1450 (2004)

    Article  ADS  Google Scholar 

  5. S. Esposito, Majorana solution of the Thomas–Fermi equation. Am. J. Phys. 70, 852–856 (2002)

    Article  ADS  Google Scholar 

  6. A. Sommerfeld, Integrazione asintotica dell’equazione differenziale di Thomas–Fermi. Rend. R. Accademia dei Lincei 15, 293–308 (1932)

    MATH  Google Scholar 

  7. J. Sanudo, A.F. Pacheco, Electrons in a box: Thomas–Fermi solution. Can. J. Phys. 84, 833–844 (2006)

    Article  ADS  Google Scholar 

  8. R.J. Komlos, A. Rabinovitch, Thomas–Fermi model for quasi one-dimensional finite crystals. Phys. Lett. A 372, 6670–6676 (2008)

    Article  ADS  Google Scholar 

  9. W. Wilcox, Thomas–Fermi statistical models of finite quark matter. Nucl. Phys. A 826, 49–73 (2009)

    Article  ADS  Google Scholar 

  10. B.G. Englert, Semiclassical Theory of Atoms (Springer, Berlin, 1988)

    Google Scholar 

  11. E. Martinenko, B.K. Shamoggi, Thomas–Fermi model: nonextensive statistical mechanics approach. Phys. Rev. A 69, 52504 (2004)

    Article  ADS  Google Scholar 

  12. A. Nagy, E. Romera, Maximum Rényi entropy and the generalized Thomas–Fermi model. Phys. Lett. A 373, 844–846 (2009)

    Article  ADS  Google Scholar 

  13. K. Ourabah, M. Tribeche, The nonextensive Thomas–Fermi theory in an \(n\)-dimensional space. Phys. A 392, 4477–4480 (2013)

    Article  Google Scholar 

  14. K. Ourabach, M. Tribeche, Relativistic formulation of the generalized nonextensive Thomas–Fermi model. Phys. A 393, 470–474 (2014)

    Article  MathSciNet  Google Scholar 

  15. H. Shababi, K. Ourabah, On the Thomas–Fermi model at the Planck scale. Phys. Lett. A 383, 1105–1109 (2019)

    Article  ADS  Google Scholar 

  16. H. Shababi, K. Ourabah, Thomas–Fermi theory at the Planck scale: a relativistic approach. Ann. Phys. (N.Y.) 413, 168051 (2020)

    Article  MathSciNet  Google Scholar 

  17. M. Ghozanfari Mojamad, J. Ranjbar, Thomas–Fermi approximation in the phase transition of neutron star matter from \(beta\)-stable nuclear matter to quark matter. Ann. Phys. (N. Y.) 412, 168048 (2020)

    Article  Google Scholar 

  18. S. Kumar Roy, S. Mukhopadhyay, J. Lahiri, D.N. Basu, Relativistic Thomas–Fermi equation of state for magnetized white dwarfs. Phys. Rev. D 100, 063008 (2019)

    Article  ADS  Google Scholar 

  19. M. Ghazanfari Mojarrad, J. Ranjbar, Hybrid neutron stars in the Thomas–Fermi theory. Phys. Rev. C 100, 015804 (2019)

    Article  ADS  Google Scholar 

  20. K. Pal, L.V. Sales, J. Wudka, Ultralight Thomas–Fermi dark matter. Phys. Rev. D 100, 083007 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Dipartimento di Fisica “Ettore Pancini” of Federico II University for hospitality and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampiero Esposito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esposito, G., Esposito, S. A new approach to the Thomas–Fermi boundary-value problem. Eur. Phys. J. Plus 135, 491 (2020). https://doi.org/10.1140/epjp/s13360-020-00507-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00507-4

Navigation