Skip to main content
Log in

Superconducting currents and charge gradients in the octonion spaces

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The paper focuses on applying the algebra of octonions to explore the influence of electric-charge gradients on the electric-current derivatives, revealing some of major influence factors of high pulse electric-currents. J. C. Maxwell was the first scholar to utilize the algebra of quaternions to study the physical properties of electromagnetic fields. The contemporary scholars employ simultaneously the quaternions and octonions to investigate the physical properties of electromagnetic fields, including the octonion field strength, field source, linear momentum, angular momentum, torque, and force and so forth. When the octonion force is equal to zero, it is able to achieve eight equations independent of each other, including the fluid continuity equation, current continuity equation, force equilibrium equation, and second-force equilibrium equation and so on. One of inferences derived from the second-force equilibrium equation is that the charge gradient and current derivative are interrelated closely, two of them must satisfy the need of the second-force equilibrium equation synchronously. Meanwhile the electromagnetic strength and linear momentum both may exert an influence on the current derivative to a certain extent. The above states that the charge gradient and current derivative are two correlative physical quantities, they must meet the requirement of second-force equilibrium equation. By means of controlling the charge gradients and other physical quantities, it is capable of restricting the development process of current derivatives, reducing the damage caused by the instantaneous impact of high pulse electric-currents, enhancing the anti-interference ability of electronic equipments to resist the high pulse electric-currents and their current derivatives. Further the second-force equilibrium equation is able to explain two types of superconducting currents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: We attempt to search the theoretical explanations hidden in the experimental data in Refs. [38] and [39].]

References

  1. J. Lekner, Chiral content of electromagnetic pulses. J. Opt. 20(10), 105605 (2018)

    Google Scholar 

  2. J.-X. Fang, J.-H. Mo, F.-M. Bai, H.-T. Wang, Experimental investigations of the electromagnetic pulse-assisted incremental drawing of aluminum alloy. Int. J. Adv. Manuf. Technol. 103(5–8), 2991–3001 (2019)

    Google Scholar 

  3. J. Borhanian, S. Sobhanian, I. Kourakis, R. Esfandyari, Evolution of linearly polarized electromagnetic pulses in laser plasmas. Phys. Plasmas 15(9), 093108 (2008)

    ADS  Google Scholar 

  4. J. Wu, Y.-H. Lu, F.-J. Sun, X.-W. Li, X.-F. Jiang, Z.-G. Wang, D.-Y. Zhang, A.-C. Qiu, S. Lebedev, Preconditioned wire array Z-pinches driven by a double pulse current generator. Plasma Phys. Control. Fusion 60(7), 075014 (2018)

    ADS  Google Scholar 

  5. B.-Y. Zhang, S. Inagaki, K. Hasamada, K. Yamasaki, F. Kin, Y. Nagashima, T. Yamada, A. Fujisawa, Study of turbulence intermittency in linear magnetized plasma. Plasma Phys. Control. Fusion 61(11), 115010 (2019)

    ADS  Google Scholar 

  6. W.-Q. Zhao, L.-Z. Wang, Z.-S. Yu, J.-S. Chen, J. Yang, A processing technology of grooves by picosecond ultrashort pulse laser in Ni alloy: enhancing efficiency and quality. Opt. Laser Technol. 111(4), 214–221 (2019)

    ADS  Google Scholar 

  7. M.F. Garcia, C. Gallrapp, M. Moll, D. Muenstermann, Radiation hardness studies of neutron irradiated CMOS sensors fabricated in the ams H18 high voltage process. J. Instrum. 11(2), P02016 (2016)

    Google Scholar 

  8. N.R.N. Idris, A.H. Yatim, Direct torque control of induction machines with constant switching frequency and reduced torque ripple. IEEE Trans. Ind. Electron. 51(4), 758–767 (2004)

    Google Scholar 

  9. O. Mokin, The synthesis of optimum current obtained by mathematical models for an electrically propelled truck drive electromotor. Prz. Elektrotech. 1(3), 75–80 (2017)

    Google Scholar 

  10. X.-W. Yang, H.-T. Hu, Y.-B. Ge, S. Aatif, Z.-Y. He, S.-B. Gao, An improved droop control strategy for VSC-based MVDC traction power supply system. IEEE Trans. Ind. Appl. 54(5), 5173–5186 (2018)

    Google Scholar 

  11. S. Ouni, M.R. Zolghadri, J. Rodriguez, M. Shahbazi, H. Oraee, P. Lezana, A.U. Schmeisser, Quick diagnosis of short circuit faults in cascaded H-bridge multilevel inverters using FPGA. J. Power Electron. 17(1), 56–66 (2017)

    Google Scholar 

  12. W.-Y. Chen, E. Rosenbaum, M.-D. Ker, Diode-triggered silicon-controlled rectifier with reduced voltage overshoot for CDM ESD protection. IEEE Trans. Device Mater. Reliab. 12(1), 10–14 (2012)

    Google Scholar 

  13. P. Bansal, A. Srivastava, A. Zaya, B. Sharma, A. Upadhyay, Design and fabrication of automatic speed controller for automobile. Int. J. Trend Sci. Res. Dev. 3(4), 524–527 (2019)

    Google Scholar 

  14. Q.-C. Zhang, Analysis and design of PLL motor speed control system. Telkomnika 11(10), 5662–5668 (2013)

    Google Scholar 

  15. E. Torres, A.J. Mazon, E. Fernandez, I. Zamora, J.C. Prez, Thermal performance of back-up current-limiting fuses. Electr. Power Syst. Res. 80(12), 1469–1476 (2010)

    Google Scholar 

  16. Y.V. Siniavskii, A.S. Fedylov, M.I. Dli, V.V. Borisov, Vacuum evaporator with the electrochemical generator on oxyhydrogen cell. Int. J. Hydrog. Energy 42(21), 14649–14655 (2017)

    Google Scholar 

  17. K. Gorecki, P. Gorecki, J. Zarebski, Measurements of parameters of the thermal model of the IGBT module. IEEE Trans. Instrum. Meas. 68(12), 1–22 (2019)

    MATH  Google Scholar 

  18. Y.-Z. Lu, A. Christou, Prognostics of IGBT modules based on the approach of particle filtering. Microelectron. Reliab. 92(1), 96–105 (2019)

    Google Scholar 

  19. V.L. Mironov, S.V. Mironov, Octonic representation of electromagnetic field equations. J. Math. Phys. 50(01), 012901 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  20. S. De Leo, G. Ducati, The octonionic eigenvalue problem. J. Phys. A 45(31), 315203 (2012)

    MathSciNet  MATH  Google Scholar 

  21. M. Gogberashvili, Octonionic version of Dirac equations. Int. J. Mod. Phys. A 21(17), 3513–3523 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  22. B.A. Bernevig, J.-Q. Hu, N. Toumbas, S.-C. Zhang, Eight dimensional quantum Hall effect and octonions. Phys. Rev. Lett. 91(23), 236803 (2003)

    ADS  Google Scholar 

  23. S. De Leo, K. Abdel-Khalek, Octonionic quantum mechanics and complex geometry. Prog. Theor. Phys. 96(04), 823–831 (1996)

    ADS  MathSciNet  Google Scholar 

  24. S. De Leo, K. Abdel-Khalek, Octonionic Dirac equation, progress theoretical. Physics 96(04), 833–845 (1996)

    MathSciNet  Google Scholar 

  25. S. De Leo, K. Abdel-Khalek, Octonionic representations of GL(8, R) and GL(4, C). J. Math. Phys. 38(02), 582–598 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  26. G. Bossard, Octonionic black holes. J. High Energy Phys. 2012(05), 113 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  27. S. Furui, The flavor symmetry in the standard model and the triality symmetry. Int. J. Mod. Phys. A 27(27), 1250158 (2012)

    ADS  MATH  Google Scholar 

  28. S. Majid, Gauge theory on nonassociative spaces. J. Math. Phys. 46(10), 103519 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  29. J.M. Figueroa-O’Farrill, Gauge theory and the division algebras. J. Geom. Phys. 32(02), 227–240 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  30. B.C. Chanyal, P.S. Bisht, T.-J. Li, O.P.S. Negi, Octonion quantum chromodynamics. Int. J. Theor. Phys. 51(11), 3410–3422 (2012)

    MathSciNet  MATH  Google Scholar 

  31. C. Furey, Generations: three prints, in colour. J. High Energy Phys. 2014(10), 046 (2014)

    MATH  Google Scholar 

  32. S. Demir, M. Tanisli, Spacetime algebra for the reformulation of fluid field equations. Int. J. Geom. Methods Mod. Phys. 14(05), 1750075 (2017)

    MathSciNet  MATH  Google Scholar 

  33. B.C. Chanyal, P.S. Bisht, O.P.S. Negi, Generalized octonion electrodynamics. J. Math. Phys. 49(06), 1333–1343 (2010)

    MathSciNet  MATH  Google Scholar 

  34. S. Demir, M. Tanisli, E. Kansu, Generalized hyperbolic octonion formulation for the fields of massive dyons and gravito-dyons. Int. J. Theor. Phys. 52(10), 3696 (2013)

    MATH  Google Scholar 

  35. V.L. Mironov, S.V. Mironov, Octonic first-order equations of relativistic quantum mechanics. Int. J. Mod. Phys. A 24(22), 4157–4167 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  36. J.C. Baez, The octonions. Bull. Am. Math. Soc. 39(02), 145–205 (2001)

    MathSciNet  MATH  Google Scholar 

  37. Z.-H. Weng, Some properties of dark matter field in the complex octonion space. Int. J. Mod. Phys. A 30(35), 1550212 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Z.-H. Weng, Forces in the complex octonion curved space. Int. J. Geom. Methods Mod. Phys. 13(6), 1650076 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Y. Cao, V. Fatemi, S.-A. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices. Nature 556(7699), 43–50 (2018)

    ADS  Google Scholar 

  40. Y. Cao, V. Fatemi, A. Demir, S.-A. Fang, S.L. Tomarken, J.Y. Luo, J.D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R.C. Ashoori, P. Jarillo-Herrero, Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556(7699), 80–84 (2018)

    ADS  Google Scholar 

  41. R.-Y. Han, J.-W. Wu, W.-D. Ding, Y. Jing, H.-B. Zhou, Q.-J. Liu, A.-C. Qiu, Hybrid PCB rogowski coil for measurement of nanosecond-risetime pulsed current. IEEE Trans. Plasma Sci. 43(10), 3555–3561 (2015)

    ADS  Google Scholar 

  42. Q.-Q. Sun, D.-H. Wang, Y.-N. Li, J.-H. Zhang, S.-J. Ye, J.-X. Cui, L.-Q. Chen, Z.-K. Wang, H.-J. Butt, D. Vollmer, X. Deng, Surface charge printing for programmed droplet transport. Nat. Mater. 18(9), 936–941 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

The author is indebted to the anonymous referees for their valuable comments on the previous manuscripts. This project was supported partially by the National Natural Science Foundation of China under Grant Number 60677039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Hua Weng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, ZH. Superconducting currents and charge gradients in the octonion spaces. Eur. Phys. J. Plus 135, 443 (2020). https://doi.org/10.1140/epjp/s13360-020-00477-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00477-7

Navigation