Skip to main content
Log in

Sivers and Boer–Mulders GTMDs in light-front holographic quark–diquark model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We calculate the time reversal odd (T-odd) generalized transverse momentum-dependent parton distributions (GTMDs) \(F^o_{1,2}\) and \(H^o_{1,1}\) and the corresponding Wigner distributions in a light-front quark–diquark model based on AdS/QCD. In the limit of zero momentum transfer, these reduce to the Sivers and Boer–Mulders TMDs, respectively. We have incorporated both scalar and axial vector diquarks in the model and obtained an overlap representation of the GTMDs using the light-front wave functions (LFWFs). Contribution from the final state interaction is incorporated at the level of one gluon exchange as a phase factor in the LFWF. We show that the final state interaction term can be factored out in this model and this part is the same for both GTMDs. We also present the Sivers and Boer–Mulders Wigner distributions in transverse momentum plane as well as in transverse impact parameter plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Hagler, A. Mukherjee, A. Schafer, Phys. Lett. B 582, 55 (2004)

    Article  ADS  Google Scholar 

  2. S. Meissner, A. Metz, M. Schlegel, JHEP 0908, 056 (2009)

    Article  ADS  Google Scholar 

  3. C. Lorce, B. Pasquin, M. Vanderhaeghen, JHEP 05, 041 (2011)

    Article  ADS  Google Scholar 

  4. C. Lorc, B. Pasquini, JHEP 1309, 138 (2013)

    Article  ADS  Google Scholar 

  5. E.P. Wigner, Phys. Rev. 40, 749 (1932)

    Article  ADS  Google Scholar 

  6. X d Ji, Phys. Rev. Lett. 91, 062001 (2003)

    Article  ADS  Google Scholar 

  7. A .V. Belitsky, X d Ji, F. Yuan, Phys. Rev. D 69, 074014 (2004)

    Article  ADS  Google Scholar 

  8. C. Lorce, B. Pasquini, Phys. Rev. D 84, 014015 (2011)

    Article  ADS  Google Scholar 

  9. Y. Hagiwara, Y. Hatta, Nucl. Phys. A 940, 158 (2015)

    Article  ADS  Google Scholar 

  10. Y. Hatta, Y. Hagiwara, EPJ Web Conf. 112, 01010 (2016)

    Article  Google Scholar 

  11. C. Lorce, B. Pasquini, X. Xiong, F. Yuan, Phys. Rev. D 85, 114006 (2012)

    Article  ADS  Google Scholar 

  12. Y. Hatta, Phys. Lett. B 708, 186 (2012)

    Article  ADS  Google Scholar 

  13. T. Liu, B.Q. Ma, Phys. Rev. D 91, 034019 (2015)

    Article  ADS  Google Scholar 

  14. Y. Hagiwara, Y. Hatta, T. Ueda, Phys. Rev. D 94(9), 094036 (2016)

    Article  ADS  Google Scholar 

  15. D. Chakrabarti, T. Maji, C. Mondal, A. Mukherjee, Phys. Rev. D 95(7), 074028 (2017)

    Article  ADS  Google Scholar 

  16. A. Mukherjee, S. Nair, V.K. Ojha, Phys. Rev. D 90(1), 014024 (2014)

    Article  ADS  Google Scholar 

  17. A. Mukherjee, S. Nair, V.K. Ojha, Phys. Rev. D 91(5), 054018 (2015)

    Article  ADS  Google Scholar 

  18. J. More, A. Mukherjee, S. Nair, Phys. Rev. D 95(7), 074039 (2017)

    Article  ADS  Google Scholar 

  19. J. More, A. Mukherjee, S. Nair, Eur. Phys. J. C 78(5), 389 (2018)

    Article  ADS  Google Scholar 

  20. J. Zhou, Phys. Rev. D 94(11), 114017 (2016)

    Article  ADS  Google Scholar 

  21. C. Lorc, B. Pasquini, Phys. Rev. D 93(3), 034040 (2016)

    Article  ADS  Google Scholar 

  22. M.G. Echevarria, A. Idilbi, K. Kanazawa, C. Lorc, A. Metz, B. Pasquini, M. Schlegel, Phys. Lett. B 759, 336 (2016)

    Article  ADS  Google Scholar 

  23. Z.L. Ma, Z. Lu, Phys. Rev. D 98(5), 054024 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. T. Maji, C. Mondal, D. Chakrabarti, Phys. Rev. D 96(1), 013006 (2017)

    Article  ADS  Google Scholar 

  25. S.J. Brodsky, D.S. Hwang, I. Schmidt, Phys. Lett. B 530, 99 (2002)

    Article  ADS  Google Scholar 

  26. S.J. Brodsky, B. Pasquini, B.W. Xiao, F. Yuan, Phys. Lett. B 687, 327 (2010)

    Article  ADS  Google Scholar 

  27. N. Kumar, H. Dahiya, Eur. Phys. J. A 51(4), 51 (2015)

    Article  ADS  Google Scholar 

  28. T. Maji, D. Chakrabarti, A. Mukherjee, Phys. Rev. D 97(1), 014016 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Burkardt, Phys. Rev. D 66, 114005 (2002)

    Article  ADS  Google Scholar 

  30. R. Jakob, P.J. Mulders, J. Rodrigues, Nucl. Phys. A 626, 937 (1997)

    Article  ADS  Google Scholar 

  31. A. Bacchetta, F. Conti, M. Radici, Phys. Rev. D 78, 074010 (2008)

    Article  ADS  Google Scholar 

  32. T. Maji, D. Chakrabarti, Phys. Rev. D 94(9), 094020 (2016)

    Article  ADS  Google Scholar 

  33. J.R. Ellis, D.S. Hwang, A. Kotzinian, Phys. Rev. D 80, 074033 (2009)

    Article  ADS  Google Scholar 

  34. D.S. Hwang, J. Korean Phys. Soc. 62, 581 (2013)

    Article  ADS  Google Scholar 

  35. T. Maji, D. Chakrabarti, Phys. Rev. D 95(7), 074009 (2017)

    Article  ADS  Google Scholar 

  36. T. Maji, D. Chakrabarti, O.V. Teryaev, Phys. Rev. D 96(11), 114023 (2017)

    Article  ADS  Google Scholar 

  37. D. Chakrabarti, C. Mondal, Phys. Rev. D 88(7), 073006 (2013)

    Article  ADS  Google Scholar 

  38. M. Burkardt, D.S. Hwang, Phys. Rev. D 69, 074032 (2004)

    Article  ADS  Google Scholar 

  39. Z. Lu, I. Schmidt, Phys. Rev. D 75, 073008 (2007)

    Article  ADS  Google Scholar 

  40. B. Pasquini, S. Rodini, A. Bacchetta,. arXiv:1907.06960 [hep-ph]

  41. D. Boer, P.J. Mulders, F. Pijlman, Nucl. Phys. B 667, 201 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Cedric Lorce for fruitful discussions. The work of T.M. is supported by the National Natural Science Foundation of China (NSFC) through Grant No. 11875112 and the China Postdoctoral Science Foundation through Grant No. KLH1512104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmay Maji.

Appendices

A Appendix: Other T-odd GTMDs

For completeness, we list our model results for other T-odd GTMDs here.

(A) \(\varGamma =\gamma ^+\):

$$\begin{aligned} F^{o \nu }_{1,1} ({{\varvec{\Delta }}}_{\perp },\mathbf{p}_{\perp },x)= & {} \bigg (C^2_\mathrm{S} N^{\nu 2}_\mathrm{S} + C^2_A \big (\frac{1}{3}N^{\nu 2}_0 + \frac{2}{3}N^{\nu 2}_1\big )\bigg ) \nonumber \\&\frac{1}{16 \pi ^3}\bigg [ (D^\prime _1-D''_1)|A_1|^2 \nonumber \\&+ \frac{1}{x^2 M^2} \bigg (p^2 \frac{\Delta _\perp ^2}{4} (1-x)^2 \bigg ) (D'_2-D''_2)|A^\nu _2|^2 \bigg ]\nonumber \\&\exp [-a(x) \tilde{\mathbf{p}}_\perp ^2] \end{aligned}$$
(51)
$$\begin{aligned} F^{o \nu }_{1,3} ({{\varvec{\Delta }}}_{\perp },\mathbf{p}_{\perp },x)= & {} \frac{1}{2} F^o_{1,1}+\bigg (C^2_\mathrm{S} N^{\nu 2}_\mathrm{S} + C^2_A \frac{1}{3}N^{\nu 2}_0 \bigg )\nonumber \\&\frac{(1-x)}{2x} (D'_1+D'_2-D''_1-D''_2)\nonumber \\&\times \frac{1}{16 \pi ^3} A^\nu _1(x)A^\nu _2(x) \exp [-a(x) \tilde{\mathbf{p}}_\perp ^2]\end{aligned}$$
(52)
$$\begin{aligned} F^{o \nu }_{1,4} ({{\varvec{\Delta }}}_{\perp },\mathbf{p}_{\perp },x)= & {} - \bigg (C^2_\mathrm{S} N^{\nu 2}_\mathrm{S} + C^2_A \big (\frac{1}{3}N^{\nu 2}_0 - \frac{2}{3}N^{\nu 2}_1\big )\bigg ) \nonumber \\&\frac{(1-x)}{x^2} (D'_2-D''_2)\nonumber \\&\times \frac{1}{16 \pi ^3} |A^\nu _2(x)|^2 \exp [-a(x) \tilde{\mathbf{p}}_\perp ^2] \end{aligned}$$
(53)

(B) \(\varGamma =\gamma ^{+}\gamma ^5\):

$$\begin{aligned} G^{o \nu }_{1,1} ({{\varvec{\Delta }}}_{\perp },\mathbf{p}_{\perp },x)= & {} -\bigg (C^2_\mathrm{S} N^{\nu 2}_\mathrm{S} + C^2_A \big (\frac{1}{3}N^{\nu 2}_0 + \frac{2}{3}N^{\nu 2}_1\big )\bigg ) \nonumber \\&\frac{(1-x)}{x^2}(D^\prime _2-D''_2) \frac{1}{16 \pi ^3} |A^\nu _2(x)|^2 \nonumber \\&\exp [-a(x) \tilde{\mathbf{p}}_\perp ^2] \end{aligned}$$
(54)
$$\begin{aligned} G^{o \nu }_{1,2} ({{\varvec{\Delta }}}_{\perp },\mathbf{p}_{\perp },x)= & {} \frac{1}{16 \pi ^3}\bigg (C^2_\mathrm{S} N^{\nu 2}_\mathrm{S} - C^2_A \frac{1}{3}N^{\nu 2}_0 \bigg )\nonumber \\&\frac{1}{x} (D'_1 + D'_2 - D''_1 - D''_2)\nonumber \\&\times A^\nu _1(x)A^\nu _2(x) \exp [-a(x) \tilde{\mathbf{p}}_\perp ^2] \end{aligned}$$
(55)
$$\begin{aligned} G^{o \nu }_{1,3} ({{\varvec{\Delta }}}_{\perp },\mathbf{p}_{\perp },x)= & {} \frac{1}{16 \pi ^3}\bigg (C^2_\mathrm{S} N^{\nu 2}_\mathrm{S} - C^2_A \frac{1}{3}N^{\nu 2}_0 \bigg )\nonumber \\&\{(D''_1 - D''_2) - (D'_1 - D'_2)\}\frac{(1-x)}{2x}\nonumber \\&\times A^\nu _1(x)A^\nu _2(x) \exp [-a(x) \tilde{\mathbf{p}}_\perp ^2] \end{aligned}$$
(56)
$$\begin{aligned} G^{o \nu }_{1,4} ({{\varvec{\Delta }}}_{\perp },\mathbf{p}_{\perp },x)= & {} \frac{1}{16 \pi ^3}\bigg (C^2_\mathrm{S} N^{\nu 2}_\mathrm{S} + C^2_A \big (\frac{1}{3}N^{\nu 2}_0 - \frac{2}{3}N^{\nu 2}_1\big )\bigg )\nonumber \\&\bigg [ |A^\nu _1(x)|^2 (D'_1 -D''_1)- \nonumber \\&\bigg (\mathbf{p}_{\perp }^2 -\frac{{{\varvec{\Delta }}}_{\perp }^2}{4}(1-x)^2\bigg )\frac{1}{x^2 M^2} |A^\nu _2(x)|^2 \nonumber \\&(D'_2 -D''_2)\bigg ] \exp [-a(x) \tilde{\mathbf{p}}_\perp ^2] \end{aligned}$$
(57)

(C) \(\varGamma =i\sigma ^{j+}\gamma ^5\):

$$\begin{aligned} H^{o \nu }_{1,2} ({{\varvec{\Delta }}}_{\perp },\mathbf{p}_{\perp },x)= & {} \bigg (C^2_S N^{\nu 2}_\mathrm{S} + C^2_A \big (\frac{1}{3}N^{\nu 2}_0 + \frac{2}{3}N^{\nu 2}_1\big )\bigg ) \nonumber \\&\frac{(1-x)}{x}(D'_1 + D'_2 - D''_1 - D''_2) \nonumber \\&\times \frac{1}{16 \pi ^3} A^\nu _1(x)A^\nu _2(x) \exp [-a(x) \tilde{\mathbf{p}}_\perp ^2] \end{aligned}$$
(58)
$$\begin{aligned} H^{o \nu }_{1,3} ({{\varvec{\Delta }}}_{\perp },\mathbf{p}_{\perp },x)= & {} \frac{1}{16 \pi ^3}\bigg (C^2_\mathrm{S} N^{\nu 2}_\mathrm{S} - C^2_A \frac{1}{3}N^{\nu 2}_0 \bigg )\nonumber \\&\bigg [ (D'_1-D''_1)|A^\nu _1(x)|^2 +\bigg (\mathbf{p}_{\perp }^2 -\frac{{{\varvec{\Delta }}}_{\perp }^2}{4}(1-x)^2\bigg ) \nonumber \\&(D'_2-D''_2) \frac{1}{x^2 M^2} |A^\nu _2(x)|^2\bigg ]\nonumber \\&\exp [-a(x) \tilde{\mathbf{p}}_\perp ^2] - \frac{1}{2 M^2} {{\varvec{\Delta }}}_{\perp }^2 H^{\nu o}_{1,2} \end{aligned}$$
(59)
$$\begin{aligned} H^{o \nu }_{1,4} ({{\varvec{\Delta }}}_{\perp },\mathbf{p}_{\perp },x)= & {} -\bigg (C^2_\mathrm{S} N^{\nu 2}_\mathrm{S} - C^2_A \frac{1}{3}N^{\nu 2}_0 \bigg ) (D'_2-D''_2) \nonumber \\&\frac{1}{16 \pi ^3} \frac{2}{x^2} |A^\nu _2(x)|^2 \exp [-a(x) \tilde{\mathbf{p}}_\perp ^2]\end{aligned}$$
(60)
$$\begin{aligned} H^{o \nu }_{1,5} ({{\varvec{\Delta }}}_{\perp },\mathbf{p}_{\perp },x)= & {} 0\end{aligned}$$
(61)
$$\begin{aligned} H^{o \nu }_{1,6} ({{\varvec{\Delta }}}_{\perp },\mathbf{p}_{\perp },x)= & {} \frac{1}{16 \pi ^3}\bigg (C^2_\mathrm{S} N^{\nu 2}_\mathrm{S} - C^2_A \frac{1}{3}N^{\nu 2}_0 \bigg ) (D'_2-D''_2) \nonumber \\&\frac{(1-x)^2}{2x^2} |A^\nu _2(x)|^2 \exp [-a(x) \tilde{\mathbf{p}}_\perp ^2]\nonumber \\&+ \frac{1}{2}H^{\nu o}_{1,2} \end{aligned}$$
(62)
$$\begin{aligned} H^{o \nu }_{1,7} ({{\varvec{\Delta }}}_{\perp },\mathbf{p}_{\perp },x)= & {} -\bigg (C^2_\mathrm{S} N^{\nu 2}_\mathrm{S} + C^2_A \big (\frac{1}{3}N^{\nu 2}_0 - \frac{2}{3}N^{\nu 2}_1\big )\bigg ) \nonumber \\&\frac{1}{16 \pi ^3}(D'_1+D'_2-D''_1-D''_2) \nonumber \\&\times \frac{1}{2x} A^\nu _1(x) A^\nu _2(x) \exp [-a(x) \tilde{\mathbf{p}}_\perp ^2]\end{aligned}$$
(63)
$$\begin{aligned} H^{o \nu }_{1,8} ({{\varvec{\Delta }}}_{\perp },\mathbf{p}_{\perp },x)= & {} \bigg (C^2_\mathrm{S} N^{\nu 2}_\mathrm{S} + C^2_A \big (\frac{1}{3}N^{\nu 2}_0 - \frac{2}{3}N^{\nu 2}_1\big )\bigg ) \nonumber \\&\frac{1}{16 \pi ^3}\{(D'_1-D'_2)+(D''_1-D''_2)\} \nonumber \\&\times \frac{(1-x)}{2x} A^\nu _1(x) A^\nu _2(x) \exp [-a(x) \tilde{\mathbf{p}}_\perp ^2] \end{aligned}$$
(64)

All the above T-odd distributions have logarithmic divergence as the power divergent terms cancel out for the combinations \((D'_1-D'_2)\) and \((D''_1-D''_2)\). The logarithmic divergence comes from the gluon mass being set to zero, and a regulator is needed for numerical evaluations. At \(\varvec{\varDelta }_{\varvec{\perp }} = 0\) [2], these T-odd GTMDs do not have any TMD limit.

Fig. 6
figure 6

\(F^{o\nu }_{1,2}(\varDelta _\perp , \mathbf{p}_{\perp })\) for three different \(x=0.1,0.2\) and 0.5. The left and right columns are for u and d quarks, respectively

B Plots of T-odd GTMDs

Our model results for T-odd GTMDs \(F^o_{1,2} ({{\varvec{\Delta }}}_{\perp },\mathbf{p}_{\perp },x)\) is shown in Fig. 6 in the \(\mathbf{p}_{\perp }\) and \({{\varvec{\Delta }}}_{\perp }\) plane for different values of x. The three rows are for three different values of \(x=0.1,0.2\) and 0.5, and the first and second columns are for u and d quarks, respectively. One can notice that the \(F^o_{1,2}\) is mostly negative for u quark and positive side for d quark. The distributions become flat near (0, 0) with the increasing value of x.

Fig. 7
figure 7

\(H^{o\nu }_{1,1}(\varDelta _\perp , \mathbf{p}_{\perp })\) for three different \(x=0.1,0.2\) and 0.5. The left and right columns are for u and d quarks, respectively

Figure 7 shows the model result for \(H^o_{1,1} ({{\varvec{\Delta }}}_{\perp },\mathbf{p}_{\perp },x)\) for u and d quarks with a different values of \(x=0.1,0.2\) and 0.5. Here, distributions do not change sign for the change in flavor unlike \(F^o_{1,2} ({{\varvec{\Delta }}}_{\perp },\mathbf{p}_{\perp },x)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrabarti, D., Kumar, N., Maji, T. et al. Sivers and Boer–Mulders GTMDs in light-front holographic quark–diquark model. Eur. Phys. J. Plus 135, 496 (2020). https://doi.org/10.1140/epjp/s13360-020-00470-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00470-0

Navigation