Skip to main content

Advertisement

Log in

Surface energy layers investigation of intelligent magnetoelectrothermoelastic nanoplates through a vibration analysis

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Intelligent materials such as magnetoelectrothermoelastic (METE) nanoplates offer great potential to supply more efficient energy harvesting devices, transducers, sensors, and actuators. In this study, the influences of slanted angle of the METE nanoplate and orthotropic angle of Pasternak foundation on the magnitude of surface energy layers are investigated through a vibrational analysis. The nanoplate is exposed to outer thermal, electric, magnetic and in-plane loadings. For modeling the plate’s nonlocal behavior and surface stresses, the governing equations are constructed based on Hamilton’s principle. Galerkin method is implemented to solve the equilibrium motions, and also for the authenticity of the solution, the equations are resolved by the Navier’s method. Obtained results are deemed useful for the mechanical analysis and design of nano-/microelectromechanical system nanostructures constructed from the METE materials. The numerical examples indicated that after a particular value of slanted angle of the nanoplate, α ≥ 80, the magnitude of surface energy layers in the vibration behavior becomes opposite to the case when the slanted angles are 0° < α < 80°. In addition, the value of the slanted angle of the nanoplate can cause the harmonic responses of the vibration due to the orthotropic angle of Pasternak foundation to shift in harmony with the slanted angle degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

s ± :

Top and bottom surface layers

Ω H :

Initial magnetic potential

C ijkl :

Bulk elastic

f nij :

Bulk piezomagnetic

h im :

Bulk dielectric

p i :

Bulk pyroelectric

E m :

Electric field intensity

ΔT :

Temperature rise

ω :

Natural frequency

τ s :

Residual surface stress

w s :

Shear transverse displacement

N e :

Electric force

N t :

Thermal force

\( D^{\text{b}}_{ij} \) :

Bending flexural rigidity

\( f_{ij}^{\text{s}} \) :

Surface piezomagnetic

Γ :

Unknown coefficient

χ :

Softness matrix

b :

Nanoplate width

N i :

Interpolation functions

J ij :

Jacobian matrixes

α :

Slanted angle of the nanoplate

Ω 0 :

Outer magnetic potential

e 0 a 0 :

Nonlocal coefficient

φ :

Electric potential

ε ii :

Normal strain element

δU strain :

Virtual strain energy

M αβ :

Bending force moment

ρ :

Mass density

K g :

Shear constant

W * :

Time-independent transverse displacement

β ij :

Thermal moduli

e mij :

Bulk piezoelectric

g in :

Bulk magnetoelectric

μ in :

Bulk magnetic

λ i :

Bulk pyromagnetic

H n :

Magnetic field intensity

2 :

Laplace operator

q :

Transverse load

w b :

Bending transverse displacement

N m :

Magnetic forces

N p :

Mechanical force

\( D^{\text{s}}_{ij} \) :

Shear flexural rigidity

\( C_{ij}^{\text{s}} \) :

Surface elastic

\( e_{ij}^{s} \) :

Surface piezoelectric

K :

Stiffness matrix

a :

Nanoplate length

h :

Nanoplate thickness

ξ i, η i :

Natural coordinates

\( \varPsi^{b,s}_{k} \) :

Weighted summation

β :

Orthotropic angle of Pasternak foundation

V 0 :

Outer electric potential

ϕ :

Magnetic potential

γ ij :

Shear strain component

δU force :

Virtual work

δU kinetic :

Virtual kinetic energy

Q αβ :

Shear force

K w :

Winkler constant

m 0, m 2 :

Mass inertias

METE:

Magnetoelectrothermoelastic

NEMS:

Nanoelectromechanical system

MEMS:

Microelectromechanical systems

References

  1. M.M. Abolhasani, M. Naebe, K. Shirvanimoghaddam, H. Fashandi, H. Khayyam, M. Joordens, A. Pipertzis, S. Anwar, R. Berger, G. Floudas, J. Michels, K. Asadi, Nano Energy. 62, 594 (2019)

    Google Scholar 

  2. M.M. Abolhasani, K. Shirvanimoghaddam, H. Khayyam, S.M. Moosavi, N. Zohdi, M. Naebe, Polym. Test. 66, 178 (2018)

    Google Scholar 

  3. Q. Zheng, B. Shi, Z. Li, Z.L. Wang, Adv. Sci. 4, 1700029 (2017)

    Google Scholar 

  4. Y.H. Chu, T. Zhao, M.P. Cruz, Q. Zhan, P.L. Yang, L.W. Martin, M. Huijben, C.H. Yang, F. Zavaliche, H. Zheng, R. Ramesh, Appl. Phys. Lett. 90, 252906 (2007)

    ADS  Google Scholar 

  5. M.H. Zhao, Z.L. Wang, S.X. Mao, Nano Lett. 4, 587 (2004)

    ADS  Google Scholar 

  6. A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)

    ADS  Google Scholar 

  7. M.E. Gurtin, A.I. Murdoch, Arch. Rational Mech. Anal. 57, 291 (1975)

    ADS  MathSciNet  Google Scholar 

  8. M. Karimi, A.R. Shahidi, S. Ziaei-Rad, Microsyst. Technol. 23, 4903 (2017)

    Google Scholar 

  9. C. Demir, Ö. Civalek, Int. J. Eng. Sci. 121, 14 (2017)

    Google Scholar 

  10. Ö. Civalek, A.K. Baltacıoğlu, Compos. Struct. 203, 458 (2018)

    Google Scholar 

  11. Ö. Civalek, Compos. B Eng. 111, 45 (2017)

    Google Scholar 

  12. B. Akgöz, Ö. Civalek, Compos. Struct. 176, 1028 (2017)

    Google Scholar 

  13. Ö. Civalek, A. Korkmaz, C. Demir, Adv. Eng. Softw. 41, 557 (2010)

    Google Scholar 

  14. Ö. Civalek, C. Demir, Appl. Math. Comput. 289, 335 (2016)

    MathSciNet  Google Scholar 

  15. M. Karimi, A.R. Shahidi, Appl. Phys. A 124, 681 (2018)

    ADS  Google Scholar 

  16. M. Karimi, A.R. Shahidi, J. Solid Mech. 8, 719 (2016)

    Google Scholar 

  17. P. Talebizadehsardari, H. Salehipour, D. Shahgholian-Ghahfarokhi, A. Shahsavar, M. Karimi, Mech. Based Des. Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1744002

    Article  Google Scholar 

  18. M. Karimi, A.R. Shahidi, Appl. Phys. A 125, 106 (2019)

    ADS  Google Scholar 

  19. M. Sobhy, A.M. Zenkour, Mater. Res Express. 5, 015028 (2018)

    ADS  Google Scholar 

  20. M. Karimi, H.A. Haddad, A.R. Shahidi, Micro Nano Lett. 10, 276 (2015)

    Google Scholar 

  21. M. Karimi, A.R. Shahidi, Appl. Phys. A 125, 154 (2019)

    ADS  Google Scholar 

  22. A.M. Zenkour, Compos. Struct. 185, 821 (2018)

    Google Scholar 

  23. M. Karimi, M.H. Shokrani, A.R. Shahidi, J Appl. Comput. Mech. 1, 122 (2015)

    Google Scholar 

  24. A. Amiri, R. Talebitooti, L. Li, Eur. Phys. J. Plus. 133, 252 (2018)

    Google Scholar 

  25. M.R. Farajpour, A.R. Shahidi, A. Farajpour, Eur. Phys. J. Plus. 134, 218 (2019)

    Google Scholar 

  26. M. R. Farajpour, M. Karimi, A. R. Shahidi, A. Farajpour, Eur. Phys. J. Plus. 134, 568 (2019)

    Google Scholar 

  27. M. Karimi, M.R. Farajpour, Appl. Phys. A 125, 530 (2019)

    ADS  Google Scholar 

  28. M. Karimi, A.R. Shahidi, Proc. Inst. Mech. Eng. N J. Nanomater. Nanoeng. Nanosyst. 231, 111 (2017)

    Google Scholar 

  29. E. Khanmirza, A. Jamalpoor, A. Kiani, Eur. Phys. J. Plus. 132, 422 (2017)

    Google Scholar 

  30. M. Karimi, Mater. Res. Express. 6, 085087 (2019)

    ADS  Google Scholar 

  31. D. Karličić, P. Kozić, S. Adhikari, Nonlinear Dyn. 93, 1495 (2018)

    Google Scholar 

  32. M. Karimi, S. Rafieian, Mater. Res. Express. 6, 075038 (2019)

    ADS  Google Scholar 

  33. D. Karličić, M. Cajić, S. Adhikari, P. Kozić, T. Murmu, Eur. J. Mech. A Solid. 64, 29 (2017)

    ADS  Google Scholar 

  34. M. Naghinejad, H.R. Ovesy, J. Vib. Control 25, 445 (2018)

    Google Scholar 

  35. R. Barretta, M. Čanadija, F.M. de Sciarra, Arch. Appl. Mech. 86, 483 (2016)

    ADS  Google Scholar 

  36. Ö. Civalek, C. Demir, Asian J. Civ. Eng. 12, 651 (2011)

    Google Scholar 

  37. H. Karami, M. Farid, J. Vib. Control 21, 2360 (2015)

    MathSciNet  Google Scholar 

  38. U. Gul, M. Aydogdu, Compos. B Eng. 137, 60 (2018)

    Google Scholar 

  39. K. Wang, B. Wang, J. Vib. Control 22, 1405 (2014)

    Google Scholar 

  40. S. Adhikari, T. Murmu, M.A. McCarthy, Finite Elem. Anal. Des. 63, 42 (2013)

    MathSciNet  Google Scholar 

  41. H.M. Numanoglu, B. Akgöz, Ö. Civalek, Int. J. Eng. Sci. 130, 33 (2018)

    Google Scholar 

  42. U. Güven, C. R. Mec. 342, 8 (2014)

    Google Scholar 

  43. C. Demir, Ö. Civalek, Compos. Struct. 168, 872 (2017)

    Google Scholar 

  44. K. Mercan, Ö. Civalek, Compos. Struct. 143, 300 (2016)

    Google Scholar 

  45. L. Xin, Z. Hu, Compos. Struct. 121, 344 (2015)

    Google Scholar 

  46. B. Akgöz, Ö. Civalek, Compos. B Eng. 129, 77 (2017)

    Google Scholar 

  47. B. Akgöz, Ö. Civalek, J Comput. Theor. Nanostruct. 8, 1821 (2011)

    Google Scholar 

  48. L. Li, Y. Hu, X. Li, Int. J. Mech. Sci. 115–116, 135 (2016)

    Google Scholar 

  49. K. Mercan, Ö. Civalek, Compos. B Eng. 114, 34 (2017)

    Google Scholar 

  50. S.S. Tomar, M. Talha, Mech. Adv. Mater. Struct. 25, 451 (2017)

    Google Scholar 

  51. S. Parida, S.C. Mohanty, Int. J. Appl. Comput. Math. 4, 22 (2018)

    Google Scholar 

  52. B. Shahriari, S. Shirvani, J. Mech. 34, 443 (2018)

    Google Scholar 

  53. G.C. Tsiatas, A.J. Yiotis, Acta Mech. 226, 1267 (2015)

    MathSciNet  Google Scholar 

  54. H. Babaei, A.R. Shahidi, Arch. Appl. Mech. 81, 1062 (2011)

    Google Scholar 

  55. O. Zabihi, M. Ahmadi, H. Khayyam, M. Naebe, Sci. Rep. 6, 38194 (2016)

    ADS  Google Scholar 

  56. M. Naebe, J. Wang, A. Amini, H. Khayyam, N. Hameed, L.H. Li, Y. Chen, B. Fox, Sci. Rep. 4, 4375 (2014)

    ADS  Google Scholar 

  57. M.K. Akbari, K. Shirvanimoghaddam, Z. Hai, S. Zhuiykov, H. Khayyam, Mater. Sci. Eng. A 682, 98 (2017)

    Google Scholar 

  58. K. Shirvanimoghaddam, M.M. Abolhasani, Q. Li, H. Khayyam, M. Naebe, Compos. A Appl. Sci. Manuf. 95, 304 (2017)

    Google Scholar 

  59. S. Amir, Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 233, 197 (2019)

    Google Scholar 

  60. H. Babaei, A.R. Shahidi, Meccanica 48, 971 (2013)

    MathSciNet  Google Scholar 

  61. M. Karimi, A.R. Shahidi, Appl. Phys. A 123, 304 (2017)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Morteza Karimi or Hamid Khayyam.

Appendices

Appendix 1

K and χ matrixes can be written as follows:

$$ \begin{aligned} K_{ij}^{b,11} & = \int\limits_{ - 1}^{ + 1} \int\limits_{ - 1}^{ + 1} {\varPsi_{{^{i} }}^{b} } \left\{ {\frac{{\partial^{4} \varPsi_{{^{j} }}^{b} }}{{\partial \xi^{4} }} + \frac{{2\,(D_{12}^{b} + 2D_{66}^{b} )}}{{D_{11}^{b} }}\frac{{\partial^{4} \varPsi_{{^{j} }}^{b} }}{{\partial \xi^{2} \partial \eta^{2} }} + \frac{{D_{22}^{b} }}{{D_{11}^{b} }}\frac{{\partial^{4} \varPsi_{{^{j} }}^{b} }}{{\partial \eta^{4} }}} \right. \\ & \quad\left. - \left( {\frac{{2\tau^{s} a^{2} }}{{D_{11}^{b} }} + \frac{{N_{\text{total}} a^{2} }}{{D_{11}^{b} }} + \frac{{K_{w} a^{4} }}{{D_{11}^{b} }}\left( {\frac{{e_{0} a_{0} }}{a}} \right)^{2} } \right)\;\left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{b} }}{{\partial \xi^{2} }} + \frac{{\partial^{2} \varPsi_{{^{j} }}^{b} }}{{\partial \eta^{2} }}} \right) + \left( {\frac{{K_{w} a^{4} }}{{D_{11}^{b} }}} \right)\;(\varPsi_{{^{j} }}^{b} ) \right. \\ & \quad \left. + \left( {\frac{{2\tau^{s} a^{2} }}{{D_{11}^{b} }} + \frac{{N_{\text{total}} a^{2} }}{{D_{11}^{b} }}} \right)\left( {\frac{{e_{0} a_{0} }}{a}} \right)^{2} \left( {\frac{{\partial^{4} \varPsi_{{^{j} }}^{b} }}{{\partial \xi^{4} }} + 2\frac{{\partial^{4} \varPsi_{{^{j} }}^{b} }}{{\partial \xi^{2} \partial \eta^{2} }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{b} }}{{\partial \eta^{4} }}} \right) \right. \\ & \quad \left. - \frac{{K_{gX1} a^{2} }}{{D_{11}^{b} }}\left( {\,\cos^{2} \beta \left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{b} }}{{\partial \xi^{2} }}} \right) + 2\cos \beta \sin \beta \,\left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{b} }}{\partial \xi \partial \eta }} \right) + \sin^{2} \beta \left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{b} }}{{\partial \eta^{2} }}} \right)} \right) \right. \\ & \quad \left. - \frac{{K_{gY1} a^{2} }}{{D_{11}^{b} }}\left( {\,\sin^{2} \beta \left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{b} }}{{\partial \xi^{2} }}} \right) - 2\sin \beta \cos \beta \,\left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{b} }}{\partial \xi \partial \eta }} \right) + \cos^{2} \beta \left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{b} }}{{\partial \eta^{2} }}} \right)} \right) \right. \\ & \quad \left. + \frac{{K_{gX1} a^{2} }}{{D_{11}^{b} }}\left( {\frac{{e_{0} a_{0} }}{a}} \right)^{2} \left( \,\cos^{2} \beta \,\left( {\frac{{\partial^{4} \varPsi_{{^{j} }}^{b} }}{{\partial \xi^{4} }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{b} }}{{\partial \xi^{2} \partial \eta^{2} }}} \right) \right.\right. \\ &\quad \left.\left. + 2\cos \beta \sin \beta \,\left( {\frac{{\partial^{4} \varPsi_{{^{j} }}^{b} }}{{\partial \xi^{3} \partial \eta }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{b} }}{{\partial \xi \partial \eta^{3} }}} \right) + \sin^{2} \beta \left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{b} }}{{\partial \eta^{4} }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{b} }}{{\partial \xi^{2} \partial \eta^{2} }}} \right) \right) \right.\\ & \quad \left. + \frac{{K_{gY1} a^{2} }}{{D_{11}^{b} }}\left( {\frac{{e_{0} a_{0} }}{a}} \right)^{2} \left( \sin^{2} \beta \,\left( {\frac{{\partial^{4} \varPsi_{{^{j} }}^{b} }}{{\partial \xi^{4} }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{b} }}{{\partial \xi^{2} \partial \eta^{2} }}} \right) \right.\right.\\ &\quad \left.\left. - 2\sin \beta \cos \beta \,\left( {\frac{{\partial^{4} \varPsi_{{^{j} }}^{b} }}{{\partial \xi^{3} \partial \eta }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{b} }}{{\partial \xi \partial \eta^{3} }}} \right) + \cos^{2} \beta \left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{b} }}{{\partial \eta^{4} }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{b} }}{{\partial \xi^{2} \partial \eta^{2} }}} \right) \right) \right\}\left| J \right|{\text{d}}\xi {\text{d}}\eta \\ \end{aligned} $$
$$ \begin{aligned} K_{ij}^{s,12} & = K_{ij}^{b,21} \left( {{\text{put}}\,\,\varPsi^{b} \;{\text{instead}}\,\;{\text{of}}\,\,\varPsi^{s} } \right) \\ & = \int\limits_{ - 1}^{ + 1} \int\limits_{ - 1}^{ + 1} {\varPsi_{{^{i} }}^{s} } \left\{ - \left( {\frac{{2\tau^{s} a^{2} }}{{D_{11}^{b} }} + \frac{{N_{\text{total}} a^{2} }}{{D_{11}^{b} }} + \frac{{K_{w} a^{4} }}{{D_{11}^{b} }}\left( {\frac{{e_{0} a_{0} }}{a}} \right)^{2} } \right)\;\left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{2} }} + \frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \eta^{2} }}} \right) \right. \\ & \quad \left. + \left( {\frac{{K_{w} a^{4} }}{{D_{11}^{b} }}} \right)\;\left( {\varPsi_{{^{j} }}^{s} } \right) + \left( {\frac{{2\tau^{s} a^{2} }}{{D_{{^{{_{11} }} }}^{b} }} + \frac{{N_{\text{total}} a^{2} }}{{D_{{^{{_{11} }} }}^{b} }}} \right)\left( {\frac{{e_{0} a_{0} }}{a}} \right)^{2} \left( {\frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{4} }} + 2\frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{2} \partial \eta^{2} }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \eta^{4} }}} \right) \right. \\ & \quad \left. - \frac{{K_{gX1} a^{2} }}{{D_{11}^{b} }}\left( {\,\cos^{2} \beta \left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{2} }}} \right) + 2\cos \beta \sin \beta \,\left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{\partial \xi \partial \eta }} \right) + \sin^{2} \beta \left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \eta^{2} }}} \right)} \right) \right. \\ & \quad \left. - \frac{{K_{gY1} a^{2} }}{{D_{11}^{b} }}\left( {\,\sin^{2} \beta \left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{2} }}} \right) - 2\sin \beta \cos \beta \,\left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{\partial \xi \partial \eta }} \right) + \cos^{2} \beta \left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \eta^{2} }}} \right)} \right) \right. \\ & \quad \left. + \frac{{K_{gX1} a^{2} }}{{D_{11}^{b} }}\left( {\frac{{e_{0} a_{0} }}{a}} \right)^{2} \left( \cos^{2} \beta \,\left( {\frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{4} }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{2} \partial \eta^{2} }}} \right) \right.\right. \\ & \quad \left.\left. + 2\cos \beta \sin \beta \,\left( {\frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{3} \partial \eta }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi \partial \eta^{3} }}} \right) + \sin^{2} \beta \left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \eta^{4} }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{2} \partial \eta^{2} }}} \right) \right) \right. \\ & \quad \left. + \frac{{K_{gY1} a^{2} }}{{D_{11}^{b} }}\left( {\frac{{e_{0} a_{0} }}{a}} \right)^{2} \left( \sin^{2} \beta \left( {\frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{4} }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{2} \partial \eta^{2} }}} \right) \right.\right. \\ & \quad \left.\left. - 2\sin \beta \cos \beta \,\left( {\frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{3} \partial \eta }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi \partial \eta^{3} }}} \right) + \cos^{2} \beta \left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \eta^{4} }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{2} \partial \eta^{2} }}} \right) \right) \right\}\left| J \right|{\text{d}}\xi {\text{d}}\eta \\ \end{aligned} $$
$$ \begin{aligned} K_{ij}^{s,22} & = \int\limits_{ - 1}^{ + 1} \int\limits_{ - 1}^{ + 1} {\varPsi_{i}^{s} } \left\{ \frac{{D_{11}^{s} }}{{D_{11}^{b} }}\frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{4} }} + \frac{{2\,(D_{12}^{s} + 2D_{66}^{s} )}}{{D_{{^{{_{11} }} }}^{b} }}\frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{2} \partial \eta^{2} }} \right.\\ &\quad \left. + \frac{{D_{22}^{s} }}{{D_{11}^{b} }}\frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \eta^{4} }} - \left( {\frac{{D_{{_{55} }}^{s} a^{2} }}{{D_{{^{{_{11} }} }}^{b} }} + \frac{{2\tau^{s} a^{2} }}{{D_{{^{{_{11} }} }}^{b} }}} \right)\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{2} }} - \left( {\frac{{D_{44}^{s} a^{2} }}{{D_{11}^{b} }} + \frac{{2\tau^{s} a^{2} }}{{D_{11}^{b} }}} \right)\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \eta^{2} }} \right.\\ &\quad \left. - \left( {\frac{{2\tau^{s} a^{2} }}{{D_{11}^{b} }} + \frac{{N_{\text{total}} a^{2} }}{{D_{11}^{b} }} + \frac{{K_{w} a^{4} }}{{D_{11}^{b} }}\left( {\frac{{e_{0} a_{0} }}{a}} \right)^{2} } \right)\;\left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{2} }} + \frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \eta^{2} }}} \right) + \left( {\frac{{K_{w} a^{4} }}{{D_{11}^{b} }}} \right)\;(\varPsi_{{^{j} }}^{s} ) \right.\\ &\quad \left. + \left( {\frac{{2\tau^{s} a^{2} }}{{D_{11}^{b} }} + \frac{{N_{\text{total}} a^{2} }}{{D_{11}^{b} }}} \right)\left( {\frac{{e_{0} a_{0} }}{a}} \right)^{2} \left( {\frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{4} }} + 2\frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{2} \partial \eta^{2} }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \eta^{4} }}} \right) \right.\\ &\quad \left. - \frac{{K_{gX1} a^{2} }}{{D_{11}^{b} }}\left( {\,\cos^{2} \beta \left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{2} }}} \right) + 2\cos \beta \sin \beta \,\left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{\partial \xi \partial \eta }} \right) + \sin^{2} \beta \left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \eta^{2} }}} \right)} \right) \right.\\ &\quad \left. - \frac{{K_{gY1} a^{2} }}{{D_{11}^{b} }}\left( {\,\sin^{2} \beta \left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{2} }}} \right) - 2\sin \beta \cos \beta \,\left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{\partial \xi \partial \eta }} \right) + \cos^{2} \beta \left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \eta^{2} }}} \right)} \right) \right.\\ &\quad \left. + \frac{{K_{gX1} a^{2} }}{{D_{11}^{b} }}\left( {\frac{{e_{0} a_{0} }}{a}} \right)^{2} \left( \cos^{2} \beta \,\left( {\frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{4} }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{2} \partial \eta^{2} }}} \right) \right.\right.\\ &\quad \left.\left. + 2\cos \beta \sin \beta \,\left( {\frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{3} \partial \eta }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi \partial \eta^{3} }}} \right) + \sin^{2} \beta \left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \eta^{4} }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{2} \partial \eta^{2} }}} \right) \right) \right.\\ &\quad \left. + \frac{{K_{gY1} a^{2} }}{{D_{11}^{b} }}\left( {\frac{{e_{0} a_{0} }}{a}} \right)^{2} \left( \sin^{2} \beta \,\left( {\frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{4} }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{2} \partial \eta^{2} }}} \right) \right.\right.\\ &\quad \left. \left. - 2\sin \beta \cos \beta \,\left( {\frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{3} \partial \eta }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi \partial \eta^{3} }}} \right) + \cos^{2} \beta \left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \eta^{4} }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{2} \partial \eta^{2} }}} \right) \right) \right\}\left| J \right|{\text{d}}\xi {\text{d}}\eta \\ \end{aligned} $$
$$ \begin{aligned} \chi_{ij}^{b,11} & = \int\limits_{ - 1}^{ + 1} {\int\limits_{ - 1}^{ + 1} {\varPsi_{{_{i} }}^{b} } \left\{ {\frac{{\rho ha^{4} }}{{D_{11} }}\left( {\varPsi_{{_{j} }}^{b} - \left( {\frac{{e_{0} a_{0} }}{a}} \right)^{2} \left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{b} }}{{\partial \xi^{2} }} + \frac{{\partial^{2} \varPsi_{{^{j} }}^{b} }}{{\partial \eta^{2} }}} \right)} \right)} \right.} \\ & \quad \left. { - \frac{{\rho h^{3} a^{2} }}{{12 \times D_{11} }}\left( {\left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{b} }}{{\partial \xi^{2} }} + \frac{{\partial^{2} \varPsi_{{^{j} }}^{b} }}{{\partial \eta^{2} }}} \right) - \left( {\frac{{e_{0} a_{0} }}{a}} \right)^{2} \left( {\frac{{\partial^{4} \varPsi_{{^{j} }}^{b} }}{{\partial \xi^{4} }} + 2\frac{{\partial^{4} \varPsi_{{^{j} }}^{b} }}{{\partial \xi^{2} \partial \eta^{2} }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{b} }}{{\partial \eta^{4} }}} \right)} \right)} \right\}\left| J \right|{\text{d}}\xi {\text{d}}\eta \\ \chi_{ij}^{s,12} & = \chi_{ij}^{b,12} ({\text{put}}\,\,\varPsi^{b} \;{\text{instead}}\,\;{\text{of}}\,\,\varPsi^{s} ) = \int\limits_{ - 1}^{ + 1} {\int\limits_{ - 1}^{ + 1} {\varPsi_{i}^{s} } } \left\{ {\frac{{\rho ha^{4} }}{{D_{11} }}\left( {\varPsi_{{_{j} }}^{s} - \left( {\frac{{e_{0} a_{0} }}{a}} \right)^{2} \left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{2} }} + \frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \eta^{2} }}} \right)} \right)} \right\}\left| J \right|{\text{d}}\xi {\text{d}}\eta \\ \chi_{ij}^{s,22} & = \int\limits_{ - 1}^{ + 1} {\int\limits_{ - 1}^{ + 1} {\varPsi_{i}^{s} } } \left\{ {\frac{{\rho ha^{4} }}{{D_{11} }}\left( {\varPsi_{{_{j} }}^{s} - \left( {\frac{{e_{0} a_{0} }}{a}} \right)^{2} \left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{2} }} + \frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \eta^{2} }}} \right)} \right)} \right. \\ & \quad \left. { - \frac{{\rho h^{3} a^{2} }}{{12 \times 84 \times D_{11} }}\left( {\left( {\frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{2} }} + \frac{{\partial^{2} \varPsi_{{^{j} }}^{s} }}{{\partial \eta^{2} }}} \right) - \left( {\frac{{e_{0} a_{0} }}{a}} \right)^{2} \left( {\frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{4} }} + 2\frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \xi^{2} \partial \eta^{2} }} + \frac{{\partial^{4} \varPsi_{{^{j} }}^{s} }}{{\partial \eta^{4} }}} \right)} \right)} \right\}\left| J \right|{\text{d}}\xi {\text{d}}\eta \\ N_{\text{total}} & = N_{\text{t}} + N_{\text{p}} + N_{\text{e}} + N_{\text{m}} \\ \end{aligned} $$
(33)

Appendix 2

Navier’s method For an exact solution of the equations, Navier’s method can be used for obtaining the natural frequency of nanoplates with simply supported boundary conditions in all edges:

$$ W^{*b} = \sum\limits_{m = 1}^{\infty } {{\kern 1pt} {\kern 1pt} {\kern 1pt} \sum\limits_{n = 1}^{\infty } {W_{mn}^{b} } } \sin {\kern 1pt} (\zeta {\kern 1pt} x)\;\sin {\kern 1pt} (\gamma {\kern 1pt} y),\quad W^{*b} = \sum\limits_{m = 1}^{\infty } {{\kern 1pt} {\kern 1pt} {\kern 1pt} \sum\limits_{n = 1}^{\infty } {W_{mn}^{s} } } \sin {\kern 1pt} (\zeta {\kern 1pt} x)\;\sin {\kern 1pt} (\gamma {\kern 1pt} y), $$
(34)

where ζ = /a, and γ = /b. Furthermore, m and n could be introduced the half-wave number alongside x and y directions. By replacing Eq. (34) into Eq. (21) and without considering orthotropic Pasternak foundation, the following matrix is derived as:

$$ \left[ {\begin{array}{*{20}c} {I_{11} } & {I_{12} } \\ {I_{21} } & {I_{22} } \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {W_{mn}^{b} } \\ {W_{mn}^{s} } \\ \end{array} } \right\}{\kern 1pt} \, = \left\{ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \right\}, $$
(35)

where

$$ \begin{aligned} I_{11} & = D_{{^{{_{11} }} }}^{b} \zeta^{4} + 2\,(D_{{^{12} }}^{b} + 2D_{{^{66} }}^{b} )\zeta^{2} \gamma^{2} + D_{{_{22} }}^{b} \gamma^{4} + 2\,\tau^{\text{s}} \left\{ {\,(\zeta^{2} + \gamma^{2} ) + (e_{0} a_{0} )^{2} (\zeta^{2} + \gamma^{2} ){\kern 1pt}^{2} } \right\} \\ & \quad + \,(N_{xt} + N_{xp} + N_{xe} + N_{xm} )\;\left\{ {\;\zeta^{2} + (e_{0} a_{0} )^{2} (\zeta^{4} + \zeta^{2} \gamma^{2} )} \right\} \\ &\quad + (N_{yt} + N_{yp} + N_{ye} + N_{ym} )\left\{ {\;\gamma^{2} + (e_{0} a_{0} )^{2} (\gamma^{4} + \alpha^{2} \gamma^{2} )} \right\} \\ & \quad - \,\omega^{2} \rho \;h{\kern 1pt} \,\left\{ {\;1 + (e_{0} a_{0} )^{2} (\zeta^{2} + \gamma^{2} )} \right\} - \omega^{2} \frac{{\rho \,h^{3} }}{12}{\kern 1pt} {\kern 1pt} \left\{ {\;(\zeta^{2} + \beta^{2} ) + (e_{0} a_{0} )^{2} (\zeta^{4} + \gamma^{4} + 2{\kern 1pt} \zeta^{2} \gamma^{2} )} \right\} \\ I_{12} & = I_{21} = 2\,\tau^{\text{s}} \left\{ {\;(\zeta^{2} + \gamma^{2} ) + (e_{0} a_{0} )^{2} (\zeta^{4} + \gamma^{4} + 2{\kern 1pt} \zeta^{2} \gamma^{2} )} \right\} \\ &\quad + (N_{xt} + N_{xp} + N_{xe} + N_{xm} )\left\{ {\;\zeta^{2} + (e_{0} a_{0} )^{2} (\zeta^{4} + \zeta^{2} \gamma^{2} )} \right\} \\ & \quad + \,(N_{yt} + N_{yp} + N_{ye} + N_{ym} )\left\{ {\;\gamma^{2} + (e_{0} a_{0} )^{2} (\gamma^{4} + \zeta^{2} \gamma^{2} )} \right\} - \omega^{2} \rho \;h{\kern 1pt} \,\left\{ {1 + (e_{0} a_{0} )^{2} (\zeta^{2} + \gamma^{2} )} \right\} \\ I_{22} & = D_{{^{{_{11} }} }}^{s} \zeta^{4} + 2\,(D_{{^{12} }}^{s} + 2D_{{^{66} }}^{s} )\zeta^{2} \gamma^{2} + D_{{_{22} }}^{s} \gamma^{4} + 2\,\tau^{\text{s}} \left\{ {\;(\zeta^{2} + \gamma^{2} ) + (e_{0} a_{0} )^{2} (\zeta^{4} + \gamma^{4} + 2{\kern 1pt} \zeta^{2} \gamma^{2} )} \right\} \\ & \quad + \,(N_{xt} + N_{xp} + N_{xe} + N_{xm} )\left\{ {\;\zeta^{2} + (e_{0} a_{0} )^{2} (\zeta^{4} + \zeta^{2} \gamma^{2} )} \right\} \\ &\quad + (N_{yt} + N_{yp} + N_{ye} + N_{ym} )\left\{ {\gamma^{2} + (e_{0} a_{0} )^{2} (\gamma^{4} + \zeta^{2} \gamma^{2} )} \right\} \\ & \quad - \,\omega^{2} \rho \,h\,\left\{ {\,\;1 + (e_{0} a_{0} )^{2} (\zeta^{2} + \gamma^{2} )} \right\}\, - \omega^{2} \frac{{\rho \,h^{3} }}{12 \times 84}\,\left\{ {(\zeta^{2} + \gamma^{2} ) + (e_{0} a_{0} )^{2} (\zeta^{4} + \gamma^{4} + 2{\kern 1pt} \zeta^{2} \gamma^{2} )\,} \right\} \\ \end{aligned} $$
(36)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, M., Farajpour, M.R., Rafieian, S. et al. Surface energy layers investigation of intelligent magnetoelectrothermoelastic nanoplates through a vibration analysis. Eur. Phys. J. Plus 135, 488 (2020). https://doi.org/10.1140/epjp/s13360-020-00467-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00467-9

Navigation