Skip to main content
Log in

High axial resolution and long field of view for light-sheet fluorescence microscopy via double-beam aperture

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We propose a simple method based on the use of interference of the double-beam aperture to enhance both the axial resolution and field of view of light-sheet fluorescence microscopy. The double-beam aperture placed in the pupil plane generates multiple-spot intensity patterns in which the size of central lobe reduces. By scanning this intensity pattern along x-axis, the light sheet is generated. By satisfactorily choosing the numerical apertures of illumination lens and detection lens, only the central light sheet is used to achieve image, so the axial resolution of light-sheet fluorescence microscopy is enhanced. Both the numerical apertures of the illumination lens and detection lens of 0.3 and 1.1, respectively, are employed to perform the simulation results. The simulation results indicated that both the axial resolution and field of view are improved in comparison to the Gaussian light-sheet. Additionally, in order to remove a small amount of the existing outside lobes, we propose a subtraction method. The simulation results demonstrated that our technique can eliminate the outside lobes in the system point spread function of the double-beam aperture beam light sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Siedentopf, R. Zsigmondy, Visualization and size measurement of ultramicroscopic particles, with special application to gold-colored ruby glass. Ann. Phys. 10, 1–39 (1903)

    Google Scholar 

  2. A.H. Voie, D.H. Burns, F.A. Spelman, Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J. Microsc. 170(3), 229–236 (1993)

    Article  Google Scholar 

  3. P.J. Keller, A.D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, E.H.K. Stelzer, Fast, high-contrast imaging of animal development with scanned light sheet based structured illumination microscopy. Nat. Method. 7, 637–642 (2010)

    Article  Google Scholar 

  4. O.E. Olarte, J. Andlla, D. Artigas, P. Loza-Alvares, Decoupled illumination detection in light sheet microscopy for fast volumetric imaging. Optica. 2(8), 702 (2015)

    Article  ADS  Google Scholar 

  5. H. Dodt, U. Leischner, A. Schierlon, N. Jährling, C.P. Mauch, K. Deininger, J.M. Deussing, M. Eder, Q. Zieglänsberger, K. Becker, Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nature Method. 4, 331–336 (2007)

    Article  Google Scholar 

  6. P.J. Keller, A.D. Schmidt, J. Wittbrodt, E.H.K. Stelzer, Reconstruction of Zebrafish early embryonic development by scanned light sheet microscopy. Science 332, 1065–1069 (2008)

    Article  ADS  Google Scholar 

  7. E. Fuchs, J.S. Jaffe, Thin laser light sheet microscopy for microbial oceanography. Opt. Express 10(2), 145 (2002)

    Article  ADS  Google Scholar 

  8. K. Mohan, S.B. Purnapatra, P.P. Mondal, Three dimensional fluorescence imaging using multiple light sheet microscopy. PLoS ONE 39, 4715 (2014)

    Google Scholar 

  9. L. Silvestri, A. Bria, L. Sacconi, G. Lannello, F.S. Pavone, Confocal light sheet microscopy: micron-scale neuroanatomy of entire mouse brain. Opt. Express 18, 20482–20598 (2012)

    Google Scholar 

  10. J. Huisken, J. Swoger, F.D. Bene, J. Wittbrodt, E.H.K. Stelzer, Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007 (2004)

    Article  ADS  Google Scholar 

  11. A.K. Gustavsson, P.N. Petrov, M.Y. Lee, Y. Shechtman, W.E. Moerner, 3D single-molecule super-resolution miecroscopy with a tilted light sheet. Nat. Commun. 9(123), 1 (2018)

    Google Scholar 

  12. R. Itoh, J.R. Landry, S.S. Hamann, O. Solgaard, Light sheet fluorescence microscopy using high-speed structured and pivoting illumination. Opt. Lett. 41(21), 5015–5018 (2016)

    Article  ADS  Google Scholar 

  13. C. Gohn-Kreuz, A. Rohrbach, Light sheet generation in inhomogeneous media using self-reconstructing beams and the STED-principle. Opt. Express 24(6), 5855 (2016)

    Article  ADS  Google Scholar 

  14. V. Le, X. Wang, C. Kuang, X. Liu, Axial resolution enhancement for light sheet fluorescence microscopy via using the subtraction method. Opt. Eng. 57(10), 103107 (2018)

    Article  ADS  Google Scholar 

  15. L. Gao, L. Shao, B.-C. Chen, E. Betzig, 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy. Nat. Protocols. 9(5), 1083–1101 (2014)

    Article  Google Scholar 

  16. T. Vettenburg, H.I.C. Dalgarno, J. Nylk, C. Coll-Llado, D.E.K. Ferrier, T. Czmar, F.J. Gunn-Moore, K. Dholakia, Light sheet microscopy using an Airy beam. Nat. Methods 11, 541–544 (2014)

    Article  Google Scholar 

  17. M. Friedrich, Q. Gan, V. Ermolayev, G.S. Harms, STED-SPIM: stimulated emission depletion improves sheet illumination microscopy resolution. Biophys. J. 100(8), L43–L45 (2011)

    Article  Google Scholar 

  18. Z.T. Zhao et al., Multicolor 4D fluorescence microscopy using ultrathin bessel light sheets. Sci. Rep. 6(26159), 1 (2016)

    Google Scholar 

  19. B.J. Chang et al., Light-sheet engineering using the field synthesis theorem. J. Phy. Photonics 2(1), 014001 (2019)

    Article  Google Scholar 

  20. R. Elena et al., How to define and optimize axial resolution in light-sheet microscopy: a simulation-based approach. Biomed. Opt. Express 11, 8–26 (2020)

    Article  Google Scholar 

  21. V. Le, X. Wang, C. Kuang, X. Liu, Background suppression in confocal scanning fluorescence microscopy with superoscillations. Opt. Commun. 426, 541–546 (2018)

    Article  ADS  Google Scholar 

  22. P. Gao, G. Ulrich Nienhaus, Precise background subtraction in stimulated emission double depletion nanoscopy. Opt. Lett. 42(4), 831–834 (2017)

    Article  ADS  Google Scholar 

  23. H.T. Liu, Y.B. Yan, G.F. Jin, Design and experimental test of diffractive superresolution elements. Appl. Opt. 45, 95–99 (2006)

    Article  ADS  Google Scholar 

  24. N.B. Jin, Y.R. Samill, Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multi-objective implementations. IEEE Trans. Antennas Propag. 55, 556–567 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work is supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number (103.03-2018.08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Nhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nhu, L.V., Hoang, X., Pham, M. et al. High axial resolution and long field of view for light-sheet fluorescence microscopy via double-beam aperture. Eur. Phys. J. Plus 135, 426 (2020). https://doi.org/10.1140/epjp/s13360-020-00410-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00410-y

Navigation