Skip to main content

Resolution-Improvement of Confocal Fluorescence Microscopy via Two Different Point Spread Functions

  • Conference paper
  • First Online:
Industrial Networks and Intelligent Systems (INISCOM 2020)

Abstract

In this paper, we propose a new method to obtain the improvement of lateral axial resolution of confocal fluorescence microscopy. In this method, we employ two different beams to illuminate the sample: (1) the Gaussian beam; (2) the donut beam. Two different images are produced from these two illumination beams. A higher resolution image is generated by a multi-relationship between these two image. A set of simulation and experimental results are employed to compare the effectiveness of proposed method with the traditional confocal fluorescence microscopy. These results demonstrated that our method can be employed to achieve the resolution-enhancement of confocal fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wan, C., et al.: Three-dimensional visible-light capsule enclosing perfect supersized darkness via antiresolution. Laser Photonic Rev. 5, 743–749 (2014)

    Article  Google Scholar 

  2. Pawley, J.: Handbook of Biological of Confocal Microscopy, 3rd edn. Springer, New York (2006)

    Google Scholar 

  3. Wilson, T.: Confocal Microscopy, vol. 426, pp. 1–64. Academic Press, London (1990)

    Google Scholar 

  4. Gu, M.: Principles of Three Dimensional Imaging in Confocal Microscopies. World Scientific, Singapore (1996)

    Book  Google Scholar 

  5. Segawa, S., Kozawa, Y., Sato, S.: Resolution enhancement of confocal microscopy by subtraction method with vector beams. Opt. Lett. 39(11), 3118–3121 (2014)

    Article  Google Scholar 

  6. So, S., et al.: Overcoming diffraction limit: from microscopy to nanoscopy. Appl. Spectros. Rev. 53(1) (2017)

    Google Scholar 

  7. Le, V., Wang, X., Kuang, C., Liu, X.: Resolution enhancement of confocal fluorescence microscopy via two illumination beams. Optics Lasers Eng. 122, 8–13 (2019)

    Google Scholar 

  8. Hell, S.W., Wichmann, J.: Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994)

    Article  Google Scholar 

  9. Gao, P., Prunsche, B., Zhou, L., Nienhaus, K., Nienhaus, G.U.: Background suppression in fluorescence nanoscopy with stimulated emission double depletion. Nature photonic. 11, 163–169 (2017)

    Article  Google Scholar 

  10. Wang, S., Chen, X., Chang, L., Xue, R., Duan, H., Sun, Y.: GMars-Q Enables long-term live-cell parallelized reversible saturable optical fluorescence transitions nanoscopy. ACS Nano 10(10), 9136–9144 (2016)

    Google Scholar 

  11. Sharma, Reena., Singh, Manjot, Sharma, Rajesh: Recent advances in STED and RESOLFT super-resolution imaging techniques. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 231(15), 117715 (2020)

    Article  Google Scholar 

  12. Dixon, Rose E., Vivas, Oscar., Hannigan, Karen I., Dickson, Eamonn J.: Ground state depletion super-resolution imaging in mammalian cells. J. Vis. Exp. 129, 56239 (2017)

    Google Scholar 

  13. Chen, X., Zou, C., Gong, Z., Dong, C., Guo, G., Sun, F.: Sub-diffraction optical manipulation of the chargestate of nitrogen vacancy center in diamond. arXiv:1410.4668

  14. Trebbia, J.-B., Baby, R., Tamarat, P., Lounis, B.: 3D optical nanoscopy with excited state saturation at liquid helium temperatures. Opt. Express 27(16), 23486–23496 (2019)

    Article  Google Scholar 

  15. Li, Y., et al.: Image scanning fluorescence emission difference microscopy based on a detector array. J. Microsc. 266, 288–297 (2017)

    Article  Google Scholar 

  16. Rust, M.J., et al.: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006)

    Article  Google Scholar 

  17. Huang, B., et al.: Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008)

    Article  Google Scholar 

  18. Betzig, E., et al.: Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006)

    Article  Google Scholar 

  19. Hess, S.T., et al.: Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91(11), 4258–4272 (2006)

    Article  Google Scholar 

  20. Classen, A., et al.: Superresolution via structured illumination quantum correlation microscopy. Optica 4(6), 480 (2017)

    Article  Google Scholar 

  21. Gustafsson, M.G.L.: Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theorycally unlimited resolution. PNAS 102(37), 13081–13086 (2005)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant number (103.03-2018.08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MinhNghia Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoang, X., Le, V., Pham, M. (2020). Resolution-Improvement of Confocal Fluorescence Microscopy via Two Different Point Spread Functions. In: Vo, NS., Hoang, VP. (eds) Industrial Networks and Intelligent Systems. INISCOM 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 334. Springer, Cham. https://doi.org/10.1007/978-3-030-63083-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63083-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63082-9

  • Online ISBN: 978-3-030-63083-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics