Skip to main content

Advertisement

Log in

Mathematical models of HIV/AIDS and drug addiction in prisons

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, we examine the interaction between drug addiction and the contagion of HIV/AIDS in Iranian prisons. We provide a simple mathematical model for such an interaction. The stability of drug addiction and HIV/AIDS models are analyzed separately with no medical treatment. Then, we present an improved model describing the effect of treatment of drug users on the spread of HIV/AIDS. This fully extended model is obtained by adding some new parameters for the treatment of drug addiction. The impact of rehabilitating treatments on the control of HIV/AIDS spread in prisons is investigated, and finally, the reproduction numbers are compared in cases where there is no cure or some treatment methods are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. J.D. Murray, Mathematical Biology: I: An Introduction, 3rd edn. (Springer, New York, 2002)

    Book  MATH  Google Scholar 

  2. J.C. Misra, Biomathematics: Modelling and Simulation (World Scientific, Singapore, 2006)

    Book  MATH  Google Scholar 

  3. B.P. Ingalls, Mathematical Modeling in Systems Biology: An Introduction (MIT Press, London, 2013)

    MATH  Google Scholar 

  4. A. Babaei, S. Banihashemi, A stable numerical approach to solve a time-fractional inverse heat conduction problem. Iran J. Sci. Technol. Trans. A 42(4), 2225–2236 (2017)

    Article  MathSciNet  Google Scholar 

  5. P.T. Sowndarrajan, J. Manimaran, A. Debbouche, L. Shangerganesh, Distributed optimal control of a tumor growth treatment model with cross-diffusion effect. Eur. Phys. J. Plus 134, 463 (2019)

    Article  Google Scholar 

  6. E.K. Akgül, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives. Chaos Interdiscip. J. Nonlinear Sci. 29(2), 023108 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Jafari, A. Babaei, S. Banihashemi, A novel approach for solving an inverse reaction-diffusion-convection problem. J. Optim. Theory Appl. 183, 688–704 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Atangana, A. Akgül, Can transfer function and Bode diagram be obtained from Sumudu transform. Alexandria Eng. J. (2020). https://doi.org/10.1016/j.aej.2019.12.028

    Article  Google Scholar 

  9. R.M. Anderson, G.F. Medly, R.M. May, A.M. Johnson, A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of aids. IMA J. Math. Appl. Med. Biol. 3(4), 229–263 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. I.S. Nikolaos, K. Dietz, D. Schenzle, Analysis of a model for the pathogenesis of AIDS. Math. Biosci. 145(1), 27–46 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. K.O. Okosun, M.A. Khan, E. Bonyah, S.T. Ogunlade, On the dynamics of HIV-AIDS and cryptosporidiosis. Eur. Phys. J. Plus 132, 363 (2017)

    Article  Google Scholar 

  12. A.R. Carvalho, C.M. Pinto, D. Baleanu, HIV/HCV coinfection model: a fractional-order perspective for the effect of the HIV viral load. Adv. Differ. Equ. 2018(1), 1–22 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. N. Bacaër, Ri, C. Pretorius, R. Wood, B. Williams, Modeling the joint epidemics of TB and HIV in a South African township. J. Math. Biol. 57(4), 557–593 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Arshad, D. Baleanu, W. Bu, Y. Tang, Effects of HIV infection on CD4+ T-cell population based on a fractional-order model. Adv. Differ. Equ. 2017(1), 92 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Babaei, H. Jafari, M. Ahmadi, A fractional order HIV/AIDS model based on the effect of screening of unaware infectives. Math. Methods Appl. Sci. 42(7), 2334–2343 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. A.D. AlAgha, A.M. Elaiw, Stability of a general reaction-diffusion HIV-1 dynamics model with humoral immunity. Eur. Phys. J. Plus 134, 390 (2019)

    Article  Google Scholar 

  17. C.P. Bhunu, W. Garira, Z. Mukandavire, Modeling HIV/AIDS and tuberculosis coinfection. Bull. Math. Biol. 71, 1745–1780 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Z. Mukandavire, A.B. Gumel, W. Garira, J.M. Tchuenche, Mathematical analysis of a model for HIV-MALARIA co-infection. Math. Biosci. Eng. 6(2), 333–362 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Babaei, H. Jafari, M. Ahmadi, Presenting a mathematical model and investigating effects of contaminated needle sharing on prevalence of HIV/AIDS disease. J. Adv. Math. Model 5(2), 91–108 (2016)

    MATH  Google Scholar 

  20. A. Jajarmi, D. Baleanu, A new fractional analysis on the interaction of HIV with CD\(4^{+}\) T-cells. Chaos Solitons Fractals 113, 221–229 (2018)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. S. Kumar, S. Jain, Assessing the effects of treatment in HIV-TB co-infection model. Eur. Phys. J. Plus 133, 294 (2018)

    Article  Google Scholar 

  22. A.I. Aliyu, A.S. Alshomrani, Y. Li, D. Baleanu, Existence theory and numerical simulation of HIV-I cure model with new fractional derivative possessing a non-singular kernel. Adv. Differ. Equ. 2019(1), 408 (2019)

    Article  MathSciNet  Google Scholar 

  23. P.K. Gupta, A. Dutta, A mathematical model on HIV/AIDS with fusion effect: Analysis and homotopy solution. Eur. Phys. J. Plus 134, 265 (2019)

    Article  Google Scholar 

  24. C.M. Pinto, A.R. Carvalho, D. Baleanu, H.M. Srivastava, Efficacy of the post-exposure prophylaxis and of the HIV latent reservoir in HIV infection. Mathematics 7(6), 515 (2019)

    Article  Google Scholar 

  25. A. Raza, M. Rafiq, D. Baleanu, M.S. Arif, M. Naveed, K. Ashraf, Competitive numerical analysis for stochastic HIV/AIDS epidemic model in a two-sex population. IET Syst. Biol. 13(6), 305–315 (2019)

    Article  Google Scholar 

  26. M.F. Tabassu, M. Saeed, A. Akgül, M. Farman, N.A. Chaudhry, Treatment of HIV/AIDS epidemic model with vertical transmission by using evolutionary Padé-approximation. Chaos Solitons Fractals 134, 109686 (2020)

    Article  MathSciNet  Google Scholar 

  27. M. Beg, Update on HIV in prisons and other closed settings, Joint United Nations Programme on HIV/AIDS (UNAIDS). (2017) Retrieved from UNAIDS website: https://www.unaids.org/sites/default/files/media_asset/20171213_UNAIDS_PCB41_Update-HIV-Prisons-UNODC_PPT.pdf

  28. J. Stone et al., Incarceration history and risk of HIV and hepatitis C virus acquisition among people who inject drugs: a systematic review and meta-analysis. Lancet Infect. Dis. 18(12), 1397–1409 (2018)

    Article  Google Scholar 

  29. P. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1), 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaei, A., Jafari, H. & Liya, A. Mathematical models of HIV/AIDS and drug addiction in prisons. Eur. Phys. J. Plus 135, 395 (2020). https://doi.org/10.1140/epjp/s13360-020-00400-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00400-0

Navigation