Skip to main content
Log in

Phonon-mediated quantum discord in dark solitons

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate the quantum correlation dynamics in dark-soliton qubits with a special attention to quantum discord. Recently, dark-soliton qubit exhibiting appreciably long lifetime is proved to be an excellent candidate for information processing. Depending on the precise distance between the dark-soliton qubits, the decay rate of Dicke symmetric and antisymmetric state is suppressed or enhanced. With the Renyi-2 entropy, we derive a simple analytical expression for the quantum discord and explore the generation and decay of correlation for different initial states. We believe that the present work could pave the stage for a new generation of quantum discord based purely on matter-wave phononics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000)

  2. Z. Ficek, R. Tanas, Phys. Rev. A 74, 024304 (2006)

    ADS  Google Scholar 

  3. R.H. Dicke, Phys. Rev. 93, 99 (1954)

    ADS  Google Scholar 

  4. M. Tavis, F.W. Cummings, Phys. Rev. 170, 379 (1968)

    ADS  Google Scholar 

  5. Y. He, M. Jiang, Opt. Comm. 382, 580 (2017)

    ADS  Google Scholar 

  6. Z. Ficek, R. Tanas, Phys. Rev. A 77, 054301 (2008)

    ADS  Google Scholar 

  7. M.I. Shaukat, A. Shaheen, A.H. Toor, J. of Mod. Opt. 60, 21 (2013)

    Google Scholar 

  8. T. Yu, J.H. Eberly, Phys. Rev. Lett. 93, 140404 (2004)

    ADS  Google Scholar 

  9. B. Li, S.M. Fei, Z.X. Wang, H. Fan, Phys. Rev. A 85, 022328 (2012)

    ADS  Google Scholar 

  10. S. Boixo, L. Aolita, D. Cavalcanti, K. Modi, A. Winter, Int. J. Quant. Inf. 9, 1643 (2011)

    Google Scholar 

  11. A. Datta, S. Gharibian, Phys. Rev. A 79, 042325 (2009)

    ADS  Google Scholar 

  12. B.P. Lanyon, M. Barbieri, M.P. Almeida, A.G. White, Phys. Rev. Lett. 101, 200501 (2008)

    ADS  Google Scholar 

  13. A. Streltsov, H. Kampermann, D. Bruß, Phys. Rev. Lett. 108, 250501 (2012)

    ADS  Google Scholar 

  14. J.B. Yuan, J.Q. Liao, L.M. Kuang, J. Phys. B: At. Mol. Opt. Phys. 43, 165503 (2010)

    ADS  Google Scholar 

  15. T. Paterek, V. Vedral, Rev. Mod. Phys. 84, 1655 (2012)

    ADS  Google Scholar 

  16. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    ADS  Google Scholar 

  17. L. Henderson, V. Vedral, J. Phys. A 34, 6899 (2001)

    ADS  MathSciNet  Google Scholar 

  18. J.B. Yuan, L.M. Kuang, Phys. Rev. A 87, 024101 (2013)

    ADS  Google Scholar 

  19. C. Wang, Y.Y. Zhang, Q.H. Chen, Phys. Rev. A 85, 052112 (2012)

    ADS  Google Scholar 

  20. D. Girolami, T. Tufarelli, G. Adesso, Phys. Rev. Lett. 110, 240402 (2013)

    ADS  Google Scholar 

  21. A. Slaoui, M. Daoud, R.A. Laamara, Quantum Inf Process 17, 178 (2018)

    ADS  Google Scholar 

  22. A. Slaoui, M.I. Shaukat, M. Daoud, R. Ahl Laamara, Eur. Phys. J. Plus 133, 413 (2018)

    Google Scholar 

  23. J. Oppenheim, M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 89, 180402 (2002)

    ADS  Google Scholar 

  24. M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen(De), U. Sen, B. SynakRadtke, Phys. Rev. A 71, 062307, (2005)

  25. S. Kim, L. Li, A. Kumar, J. Wu. Phys. Rev. A 97, 032326 (2018)

    ADS  Google Scholar 

  26. K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, Phys. Rev. Lett. 104, 080501 (2010)

    ADS  MathSciNet  Google Scholar 

  27. S. Luo, S. Fu, Phys. Rev. Lett. 106, 120401 (2011)

    ADS  Google Scholar 

  28. K. Baumann, C. Guerlin, F. Brennecke, T. Esslinger, Nature 464, 1301 (2010)

    ADS  Google Scholar 

  29. M. Eghbali-Arani, H. Yavari, M.A. Shahzamanian, V. Giovannetti, S. Barzanjeh, JOSA B 32(5), 798–804 (2015)

    ADS  Google Scholar 

  30. F. Mulansky, J. Mumford, D.H.J. O’Dell, Phys. Rev. A 84, 063602 (2011)

    ADS  Google Scholar 

  31. M.A. Cirone, G.D. Chiara, G.M. Palma, A. Recati, New J. Phys. 11, 103055 (2009)

    ADS  Google Scholar 

  32. B.P. Anderson, P.C. Haljan, C.A. Regal, D.L. Feder, L.A. Collins, C.W. Clark, E.A. Cornell, Phys. Rev. Lett. 86, 2926 (2001)

    ADS  Google Scholar 

  33. Y.S. Kivshar, G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, San Diego, 2003)

    Google Scholar 

  34. M.I. Shaukat, E.V. Castro, H. Terças, Phys. Rev. A 95, 053618 (2017)

    ADS  Google Scholar 

  35. M. I. Shaukat, E. V. Castro and H. Terças, (2018). arXiv:1810.10923

  36. M. I. Shaukat, E. V. Castro and H. Terças, (2018). arXiv:1801.08169

  37. M.I. Shaukat, E.V. Castro, H. Terças, Phys. Rev. A 98, 022319 (2018)

    ADS  Google Scholar 

  38. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    ADS  Google Scholar 

  39. N. Li, S. Luo, Phys. Rev. A 7776, 022301 032327, (2008)

  40. S. Luo, Phys. Rev. A 76, 032327 (2007)

    ADS  Google Scholar 

  41. S. Luo, Phys. Rev. A 77, 042303 (2008)

    ADS  Google Scholar 

  42. Z. Ma, Z. Chen, F.F. Fanchini, S.M. Fei, Scientic reports 5, 10262 (2015)

    ADS  Google Scholar 

  43. T.J. Osborne, F. Verstraete, Phys. Rev. lett. 96, 220503 (2006)

    ADS  Google Scholar 

  44. V.E. Zakharov, A.B. Shabat, Sov. Phys. JETP 34, 62 (1972)

    ADS  Google Scholar 

  45. V.E. Zakharov, A.B. Shabat, Sov. Phys. JETP 37, 823 (1973)

    ADS  Google Scholar 

  46. G. Huang, J. Szeftel, S. Zhu, Phys. Rev. A 65, 053605 (2002)

    ADS  Google Scholar 

  47. M. Hohmann, F. Kindermann, B. Ganger, T. Lausch, D. Mayer, F. Schmidt, A. Widera, EPJ Quantum Technology 2, 23 (2015)

    Google Scholar 

  48. N. Parker, Numerical Studies of Vortices and Dark Solitons in atomic Bose Einstein Condensates, Ph.D Thesis (2004)

  49. P. Krüger, S. Hofferberth, I.E. Mazets, I. Lesanovsky, J. Schmiedmayer, Phys. Rev. Lett. 105, 265302 (2010)

    ADS  Google Scholar 

  50. J.C. Martinez, Euro. Phys. Lett. 96, 14007 (2011)

    ADS  Google Scholar 

  51. A.L. Gaunt, T.F. Schmidutz, I. Gotlibovych, R.P. Smith, Z. Hadzibabic, Phys Rev. Lett. 110, 200406 (2013)

    ADS  Google Scholar 

  52. J. Dziarmaga, Phys. Rev. A 70, 063616 (2004)

    ADS  Google Scholar 

  53. A. Singh, S. Pradyumna, A.R.P. Rau, U. Sinha, J. Opt. Soc. Am. B 34, 681 (2017)

    ADS  Google Scholar 

  54. A.R.P. Rau, M. Ali, G. Alber, Euro. Phys. Lett. 82, 40002 (2008)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the IET under the A F Harvey Engineering Research Prize and funded by FCT/MCTES through national funds and when applicable co-funded by EU funds under the project UIDB/EEA/50008/2020. H. T. thanks the support from Fundação para a Ciência e a Tecnologia (FCT-Portugal) through the Grant No. IF/00433/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Shaukat.

Appendices

Appendix A: Entangled state elements

The linear entropy \(S_2(\rho _B)\) for an entangled state of Eq. (29) is given by:

$$\begin{aligned} S_2\left( \rho _B \right)= & {} \frac{2 \mathrm{e}^{ - 2\gamma t}}{\left( \gamma ^2 - \Gamma ^2 \right) ^2} \left[ 2\alpha \left( \gamma ^2 - \Gamma ^2 \right) ^2\left\{ 1-\delta \mathrm{e}^{ \gamma t} \right. \right. \\&+\left. \left. 2\alpha \delta \mathrm{e}^{ -\gamma t} \right\} \right. - \left. 2\alpha ^2 \left\{ \delta ^2+\left( \gamma ^2 - \Gamma ^2 \right) ^2 \mathrm{e}^{ -2\gamma t} \right\} \right] . \end{aligned}$$

The elements of the matrix L after simplification can be written as:

$$\begin{aligned} L_{11}= & {} \frac{2\alpha \gamma \Gamma Z - \alpha \left( {\gamma ^2} + {\Gamma ^2} \right) \sinh \left( {\Gamma t} \right) + \left( {\gamma ^2} - {\Gamma ^2} \right) \sqrt{\alpha \left( {1 - \alpha } \right) } }{{\sqrt{\alpha \left( {\left( {{\gamma ^2} - {\Gamma ^2}} \right) \left( {{\mathrm{e}^{\gamma t}} - \alpha {\mathrm{e}^{ - \gamma t}}} \right) - \alpha \delta } \right) \left( {\delta + \left( {{\gamma ^2} - {\Gamma ^2}} \right) {\mathrm{e}^{ - \gamma t}}} \right) } }}, \nonumber \\ L_{22}= & {} \frac{{2\alpha \gamma \Gamma Z - \alpha \left( {{\gamma ^2} + {\Gamma ^2}} \right) \sinh \left( {\Gamma t} \right) - \left( {{\gamma ^2} - {\Gamma ^2}} \right) \sqrt{\alpha \left( {1 - \alpha } \right) } }}{{\sqrt{\alpha \left( {\left( {{\gamma ^2} - {\Gamma ^2}} \right) \left( {{\mathrm{e}^{\gamma t}} - \alpha {\mathrm{e}^{ - \gamma t}}} \right) - \alpha \delta } \right) \left( {\delta + \left( {{\gamma ^2} - {\Gamma ^2}} \right) {\mathrm{e}^{ - \gamma t}}} \right) } }}, \nonumber \\ L_{33}= & {} \frac{{{{\left( {{\gamma ^2} - {\Gamma ^2}} \right) }^2}\left( {1 - \alpha {\mathrm{e}^{ - 2\gamma t}}} \right) - \left( {{\gamma ^2} - {\Gamma ^2}} \right) 2\alpha \delta {\mathrm{e}^{ - 2\gamma t}} - \alpha {\delta ^2}}}{{\left( {\left( {{\gamma ^2} - {\Gamma ^2}} \right) \left( {{\mathrm{e}^{\gamma t}} - \alpha {\mathrm{e}^{ - \gamma t}}} \right) - \alpha \delta } \right) \left( {\delta + \left( {{\gamma ^2} - {\Gamma ^2}} \right) {\mathrm{e}^{ - \gamma t}}} \right) }}. \end{aligned}$$
(A1)

In this case, the quantum discord takes the form:

$$\begin{aligned} \mathcal {Q}\left( {{t}} \right)&= \frac{{ - 2\alpha {\mathrm{e}^{ - \gamma t}}}}{{\left( {{\gamma ^2} - {\Gamma ^2}} \right) }}\left( {\delta + \left( {{\gamma ^2} - {\Gamma ^2}} \right) {\mathrm{e}^{ - \gamma t}}} \right) {\log _2}\left( {\frac{{\alpha {\mathrm{e}^{ - \gamma t}}}}{{\left( {{\gamma ^2} - {\Gamma ^2}} \right) }}\left( {\delta + \left( {{\gamma ^2} - {\Gamma ^2}} \right) {\mathrm{e}^{ - \gamma t}}} \right) } \right) \nonumber \\&\quad + \sum \limits _{i = 1}^4 {{\zeta _i}} {\log _2}\left( {{\zeta _i}} \right) - \frac{{2{\mathrm{e}^{ - \gamma t}}}}{{\left( {{\gamma ^2} - {\Gamma ^2}} \right) }}\left( {\left( {{\gamma ^2} - {\Gamma ^2}} \right) \left( {{\mathrm{e}^{\gamma t}} - \alpha {e^{ - \gamma t}}} \right) - \alpha \delta } \right) \nonumber \\&\quad \times {\log _2}\left( {\frac{{{\mathrm{e}^{ - \gamma t}}}}{{\left( {{\gamma ^2} - {\Gamma ^2}} \right) }} \left( {\left( {{\gamma ^2} - {\Gamma ^2}} \right) \left( {{e^{\gamma t}} - \alpha {\mathrm{e}^{ - \gamma t}}} \right) - \alpha \delta } \right) } \right) \nonumber \\&\quad - S_2\left( \rho _B \right) \max \left\{ {{L_{11}}^2,{L_{22}}^2,{L_{33}}^2} \right\} , \end{aligned}$$
(A2)

where the eigenvalues \({\zeta _{i}}\) of the density matrix \({{\rho _{AB}}}\) are:

$$\begin{aligned} \zeta _{1,2}= & {} \frac{{{\mathrm{e}^{ - \gamma t}}}}{{2\left( {{\gamma ^2} - {\Gamma ^2}} \right) }}\nonumber \\&\left[ \left( {{\gamma ^2} - {\Gamma ^2}} \right) {\mathrm{e}^{\gamma t}} - 2\alpha \delta \pm \sqrt{{{\left( {\left( {{\gamma ^2} - {\Gamma ^2}} \right) \left( {2\alpha {\mathrm{e}^{ - \gamma t}} - {\mathrm{e}^{\gamma t}}} \right) + 2\alpha \delta } \right) }^2} + 4\alpha \left( {1 - \alpha } \right) {{\left( {{\gamma ^2} - {\Gamma ^2}} \right) }^2}} \right] , \nonumber \\ {\zeta _3}= & {} \frac{{\left( {\gamma + \Gamma } \right) \alpha {\mathrm{e}^{ - \gamma t}}}}{{\left( {\gamma - \Gamma } \right) }}\left( {{\mathrm{e}^{ - \Gamma t}} - {\mathrm{e}^{ - \gamma t}}} \right) , \quad {\zeta _4} = \frac{{\left( {\gamma - \Gamma } \right) \alpha {\mathrm{e}^{ - \gamma t}}}}{{\left( {\gamma + \Gamma } \right) }}\left( {{\mathrm{e}^{\Gamma t}} - {\mathrm{e}^{ - \gamma t}}} \right) . \end{aligned}$$
(A3)

Appendix B: Mixed-state elements

The classical correlation for the initial mixed state is given by:

$$\begin{aligned} {\mathcal{C}_2}\left( {{t}} \right)= & {} \frac{{2{\mathrm{e}^{ - 2\gamma t}}}}{{9{{\left( {{\gamma ^2} - {\Gamma ^2}} \right) }^2}}}\left[ \begin{array}{l} 9{\left( {{\gamma ^2} - {\Gamma ^2}} \right) ^2}{\mathrm{e}^{2\gamma t}} - {\left( {\left( {{\gamma ^2} - {\Gamma ^2}} \right) \left( {\alpha {\mathrm{e}^{ - \gamma t}} + {\mathrm{e}^{ - \Gamma t}}} \right) + \alpha \delta } \right) ^2}\\ - {\left( {\left( {{\gamma ^2} - {\Gamma ^2}} \right) \left( {3{\mathrm{e}^{\gamma t}} - \alpha {\mathrm{e}^{ - \gamma t}} - {\mathrm{e}^{ - \Gamma t}}} \right) - \alpha \delta } \right) ^2} \end{array} \right] \nonumber \\&\times \max \left\{ {{L_{11}}^2,{L_{33}}^2} \right\} , \end{aligned}$$
(B1)

with

$$\begin{aligned} {L_{11}}= & {} {L_{22}} = \frac{{2\alpha \gamma \Gamma Z - \alpha \left( {{\gamma ^2} + {\Gamma ^2}} \right) \sinh \left( {\Gamma t} \right) + \left( {{\gamma ^2} - {\Gamma ^2}} \right) {\mathrm{e}^{ - \Gamma t}}}}{{\sqrt{\left( {\left( {{\gamma ^2} - {\Gamma ^2}} \right) \left( {\alpha {\mathrm{e}^{ - \gamma t}} + {\mathrm{e}^{ - \Gamma t}}} \right) + \alpha \delta } \right) \left( {\left( {{\gamma ^2} - {\Gamma ^2}} \right) \left( {3{\mathrm{e}^{\gamma t}} - \alpha {\mathrm{e}^{ - \gamma t}} - {\mathrm{e}^{ - \Gamma t}}} \right) - \alpha \delta } \right) } }}, \nonumber \\ {L_{33}}= & {} \frac{{\alpha {{\left( {{\gamma ^2} - {\Gamma ^2}} \right) }^2}\left( {3{\mathrm{e}^{\gamma t}} - \alpha {\mathrm{e}^{ - \gamma t}} - 2{e^{ - \Gamma t}}} \right) - 2{\alpha ^2}\left( {{\gamma ^2} - {\Gamma ^2}} \right) \delta - \left( {\left( {{\gamma ^2} - {\Gamma ^2}} \right) {\mathrm{e}^{ - \Gamma t}} + \alpha \delta } \right) }}{{\left( {\left( {{\gamma ^2} - {\Gamma ^2}} \right) \left( {\alpha {\mathrm{e}^{ - \gamma t}} + {\mathrm{e}^{ - \Gamma t}}} \right) + \alpha \delta } \right) \left( {\left( {{\gamma ^2} - {\Gamma ^2}} \right) \left( {3{\mathrm{e}^{\gamma t}} - \alpha {\mathrm{e}^{ - \gamma t}} - {\mathrm{e}^{ - \Gamma t}}} \right) - \alpha \delta } \right) }}.\nonumber \\ \end{aligned}$$
(B2)

The quantum discord for this state can be written as:

$$\begin{aligned} \mathcal{Q}\left( {{t}} \right)&= - \frac{{2{\mathrm{e}^{ - \gamma t}}}}{{3\left( {{\gamma ^2} - {\Gamma ^2}} \right) }}\left( {\left( {{\gamma ^2} - {\Gamma ^2}} \right) \left( {\alpha {\mathrm{e}^{ - \gamma t}} + {\mathrm{e}^{ - \Gamma t}}} \right) + \alpha \delta } \right) \nonumber \\&\quad \times {\log _2} \left[ {\frac{{{e^{ - \gamma t}}}}{{3\left( {{\gamma ^2} - {\Gamma ^2}} \right) }}\left( {\left( {{\gamma ^2} - {\Gamma ^2}} \right) \left( {\alpha {\mathrm{e}^{ - \gamma t}} + {\mathrm{e}^{ - \Gamma t}}} \right) + \alpha \delta } \right) } \right] \nonumber \\&\quad - \frac{{2{\mathrm{e}^{ - \gamma t}}}}{{3\left( {{\gamma ^2} - {\Gamma ^2}} \right) }}\left( {\left( {{\gamma ^2} - {\Gamma ^2}} \right) \left( {3{\mathrm{e}^{\gamma t}} - \alpha {\mathrm{e}^{ - \gamma t}} - {\mathrm{e}^{ - \Gamma t}}} \right) - \alpha \delta } \right) \nonumber \\&\quad \times {\log _2} \left[ {\frac{{2{\mathrm{e}^{ - \gamma t}}}}{{3\left( {{\gamma ^2} - {\Gamma ^2}} \right) }}\left( {\left( {{\gamma ^2} - {\Gamma ^2}} \right) \left( {3{\mathrm{e}^{\gamma t}} - \alpha {\mathrm{e}^{ - \gamma t}} - {\mathrm{e}^{ - \Gamma t}}} \right) - \alpha \delta } \right) } \right] \nonumber \\&\quad + \sum \limits _{i = 1}^4 {{\zeta _i}} {\log _2}\left( {{\zeta _i}} \right) - {\mathcal{C}_2}\left( {{ t}} \right) , \end{aligned}$$
(B3)

with the eigenvalues \({\zeta _{i}}\) as:

$$\begin{aligned} {\zeta _1}= & {} \frac{\alpha }{3}{\mathrm{e}^{ - 2\gamma t}}, \quad {\zeta _2} = \frac{{{\mathrm{e}^{ - \gamma t}}}}{{3\left( {{\gamma ^2} - {\Gamma ^2}} \right) }}\left( {\left( {{\gamma ^2} - {\Gamma ^2}} \right) \left( {3{\mathrm{e}^{\gamma t}} - \alpha {\mathrm{e}^{ - \gamma t}} - 2{e^{ - \Gamma t}}} \right) - 2\alpha \delta } \right) , \nonumber \\ {\zeta _3}= & {} \frac{{{\mathrm{e}^{ - \gamma t}}}}{{3\left( {{\gamma ^2} - {\Gamma ^2}} \right) }}\left( {2\left( {{\gamma ^2} - {\Gamma ^2}} \right) {\mathrm{e}^{ - \Gamma t}} + \alpha \delta + 2\gamma \alpha \Gamma Z - \alpha \left( {{\gamma ^2} + {\Gamma ^2}} \right) \sinh \left( {\Gamma t} \right) } \right) , \nonumber \\ {\zeta _4}= & {} \frac{{\alpha {\mathrm{e}^{ - \gamma t}}}}{{3\left( {{\gamma ^2} - {\Gamma ^2}} \right) }}\left( {\delta - 2\gamma \Gamma Z + \left( {{\gamma ^2} + {\Gamma ^2}} \right) \sinh \left( {\Gamma t} \right) } \right) . \end{aligned}$$
(B4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaukat, M.I., Slaoui, A., Terças, H. et al. Phonon-mediated quantum discord in dark solitons. Eur. Phys. J. Plus 135, 357 (2020). https://doi.org/10.1140/epjp/s13360-020-00373-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00373-0

Navigation