Skip to main content
Log in

Late time evolution of negatively curved FLRW models

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study the late time evolution of negatively curved Friedmann–Lemaître–Robertson–Walker (FLRW) models with a perfect fluid matter source and a scalar field nonminimally coupled to matter. Since under mild assumptions on the potential V, it is already known—see e.g., Giambò and Miritzis (Class Quantum Grav 27:095003, 2010)—that equilibria corresponding to nonnegative local minima for V are asymptotically stable, we classify all cases where one of the energy components eventually dominates. In particular for nondegenerate minima with zero critical value, we rigorously prove that if \(\gamma \), the parameter of the equation of state is larger than 2/3, then there is a transfer of energy from the fluid and the scalar field to the energy density of the scalar curvature. Thus, the scalar curvature, if present, has a dominant effect on the late evolution of the universe and eventually dominates over both the perfect fluid and the scalar field. The analysis in complemented with the case where V is exponential, and therefore the scalar field diverges to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Also observe that the transition case \(\gamma =\tfrac{2}{3}\) is excluded from the current analysis, similarly to the transition case \(\gamma =1\) of [20, Theorem 2].

References

  1. A.A. Coley, Dynamical Systems and Cosmology (Kluwer, Dordrecht, 2003)

    MATH  Google Scholar 

  2. S. Weinberg, Cosmology (OUP, Oxford, 2008)

    MATH  Google Scholar 

  3. S. Bahamonde, C.G. Böhmer, S. Carloni, E.J. Copeland, W. Fang, N. Tamanini, Phys. Rep. 775–777, 1–122 (2018)

    ADS  Google Scholar 

  4. M. Gasperini, Elements of String Cosmology (CUP, Cambridge, 2007)

    MATH  Google Scholar 

  5. Y. Fuji, K. Maeda, The Scalar-Tensor Theory of Gravitation (CUP, Cambridge, 2003)

    Google Scholar 

  6. V. Faraoni, Cosmology in Scalar-Tensor Gravity (Kluwer, Dordrecht, 2004)

    MATH  Google Scholar 

  7. R. Bean, D. Bernat, L. Pogosian, A. Silvestri, M. Trodden, Phys. Rev. D 75(6), 064020 (2007)

    ADS  MathSciNet  Google Scholar 

  8. G. Leon, P. Silveira, C.R. Fadragas, arXiv:1009.0689 [gr-qc] (2010)

  9. J. Khoury, A. Weltman, Phys. Rev. D 69, 044026 (2004)

    ADS  MathSciNet  Google Scholar 

  10. T.P. Waterhouse, arXiv:astro-ph/0611816 (2006)

  11. L. Amendola, Phys. Rev. D 62, 043511 (2000)

    ADS  Google Scholar 

  12. A. Pourtsidou, C. Skordis, E.J. Copeland, Phys. Rev. D 88, 083505 (2013)

    ADS  Google Scholar 

  13. E.J. Copeland, A.R. Liddle, D. Wands, Phys. Rev. D 57, 4686 (1988)

    ADS  Google Scholar 

  14. O. Luongo, M. Muccino, Phys Rev D 98, 103520 (2018)

    ADS  MathSciNet  Google Scholar 

  15. A.P. Billyard, A.A. Coley, Phys. Rev. D 61, 083503 (2000)

    ADS  MathSciNet  Google Scholar 

  16. V. Faraoni, Phys. Rev. D 62, 023504 (2000)

    ADS  Google Scholar 

  17. J. Wainwright, G.F.R. Ellis, Dynamical Systems in Cosmology (CUP, Cambridge, 1997)

    MATH  Google Scholar 

  18. V.A. Belinsky, I.M. Khalatnikov, L.P. Grishchuk, Y.B. Zeldovich, Phys. Lett. B 155, 232 (1985)

    ADS  MathSciNet  Google Scholar 

  19. Wei Fang, Ying Li, Kai Zhang, Lu Hui-Qing, Class. Quantum Grav. 26, 155005 (2009)

    ADS  Google Scholar 

  20. R. Giambò, J. Miritzis, Class. Quantum Grav. 27, 095003 (2010)

    ADS  Google Scholar 

  21. N. Dimakis, A. Karagiorgos, A. Zampeli, A. Paliathanasis, T. Christodoulakis, P.A. Terzis, Phys. Rev. D 93, 123518 (2016)

    ADS  Google Scholar 

  22. S. Foster, Class. Quant. Grav. 15, 3485 (1998)

    ADS  Google Scholar 

  23. J. Miritzis, Class. Quantum Grav. 20, 2981 (2003)

    ADS  MathSciNet  Google Scholar 

  24. A. Nunes, J.P. Mimoso, T.C. Charters, Phys. Rev. D 63, 083506 (2001)

    ADS  Google Scholar 

  25. N. Aghanim et al., Planck Collaboration, (arXiv:1807.06209 [astro-ph.CO]) (2018)

  26. M. Kowalski et al., The supernova cosmology project. ApJ 686, 749–778 (2008)

    ADS  Google Scholar 

  27. J. Ryan, S. Doshi, B. Ratra, Mon. Not. R. Astron. Soc. 480(1), 759–767 (2018)

    ADS  Google Scholar 

  28. H. Yu, F.Y. Wang, ApJ 828, 85 (2016)

    ADS  Google Scholar 

  29. G. Ryskin, Astropart. Phys. 62, 258–268 (2015)

    ADS  Google Scholar 

  30. K. Ichikawa, M. Kawasaki, T. Sekiguchi, T. Takahashi, J. Cosmol. Astropart. Phys. 12, 005 (2006)

    ADS  Google Scholar 

  31. N. Kryloff, N. Bogoliuboff, Introduction to Nonlinear Mechanics (PUP, Princeton, 1943)

    MATH  Google Scholar 

  32. J. Miritzis, R. Giambò, AIP Conf. Proc. 1241, 1061 (2010)

    ADS  Google Scholar 

  33. R.J. van den Hoogen, A.A. Coley, D. Wand, Class. Quantum Grav. 16, 1843 (1999)

    ADS  Google Scholar 

  34. J. Perez, A. Füzfa, T. Carletti, L. Mélot, L. Guedezounme, Gen. Rel. Grav. 46, 1753 (2014)

    ADS  Google Scholar 

  35. C.G. Park, B. Ratra, ApJ 868, 83 (2018)

    ADS  Google Scholar 

  36. J. Miritzis, J. Math. Phys. 46, 082502 (2005)

    ADS  MathSciNet  Google Scholar 

  37. A.A. Coley, M. Goliath, Phys. Rev. D 62, 043526 (2000)

    ADS  MathSciNet  Google Scholar 

  38. K. Tzanni, J. Miritzis, Phys. Rev. D 89, 103540 (2014)

    ADS  Google Scholar 

  39. L. Amendola, D. Polarski, S. Tsujikawa, Phys. Rev. Lett. 98, 131302 (2007)

    ADS  MathSciNet  Google Scholar 

  40. L. Amendola, R. Gannouji, D. Polarski, S. Tsujikawa, Phys. Rev. D 75, 083504 (2007)

    ADS  Google Scholar 

  41. L. Amendola, D. Polarski, S. Tsujikawa, Int. J. Mod. Phys. D 16, 1555 (2007)

    ADS  Google Scholar 

  42. S. Capozziello, P. Martin-Moruno, C. Rubano, Phys. Lett. B 664, 12–15 (2008)

    ADS  Google Scholar 

  43. S. Capozziello, S. Nojiri, S.D. Odintsov, A. Troisi, Phys. Lett. B 639, 135–143 (2006)

    ADS  Google Scholar 

  44. M. Ferraris, M. Francaviglia, G. Magnano, Class. Quantum Grav. 7, 261 (1990)

    ADS  Google Scholar 

  45. S. Cotsakis, Phys. Rev. D 47, 1437 (1993)

    ADS  MathSciNet  Google Scholar 

  46. S. Cotsakis, Erratum. Phys. Rev. D 49, 1145 (1994)

    ADS  MathSciNet  Google Scholar 

  47. S. Capozziello, R. de Ritis, A.A. Marino, Class. Quantum Grav. 14, 3243 (1997)

    ADS  Google Scholar 

  48. C.H. Brans, Class. Quantum Grav. 5, L197 (1998)

    Google Scholar 

  49. G. Magnano, L.M. Sokołowski, Phys. Rev. D 50, 5039 (1994)

    ADS  MathSciNet  Google Scholar 

  50. V. Faraoni, E. Gunzig, P. Nardone, Fund. Cosmic Phys. 20, 121 (1999)

    ADS  Google Scholar 

  51. V. Faraoni, S. Nadeau, Phys. Rev. D 75, 023501 (2007)

    ADS  MathSciNet  Google Scholar 

  52. S. Capozziello, M. Francaviglia, Gen. Relat. Gravit. 40, 357–420 (2008)

    ADS  Google Scholar 

  53. G. Leon, Class. Quantum Grav. 26, 035008 (2009)

    ADS  Google Scholar 

  54. S. Capozziello, P. Martin-Moruno, C. Rubano, Phys. Lett. B 689, 117–121 (2010)

    ADS  MathSciNet  Google Scholar 

  55. T. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451–497 (2010)

    ADS  Google Scholar 

  56. A. De Felice, S. Tsujikawa, Living Rev. Relativity 13, 3–161 (2010)

    ADS  Google Scholar 

  57. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59–144 (2011)

    ADS  MathSciNet  Google Scholar 

  58. S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167–321 (2011)

    ADS  MathSciNet  Google Scholar 

  59. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1–104 (2017)

    ADS  MathSciNet  Google Scholar 

  60. T. Damour, K. Nordtvedt, Phys. Rev. Lett. 70, 2217 (1993)

    ADS  Google Scholar 

  61. T. Damour, K. Nordtvedt, Phys. Rev. D 48, 3436 (1993)

    ADS  MathSciNet  Google Scholar 

  62. I.P. Mimoso, A. Nunes, Astrophys. Space Sci. 283(4), 661 (2003)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Salvatore Capozziello and Orlando Luongo for valuable discussions and suggestions. We also thank an anonymous referee for his suggestions which helped us to clarify some points.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Giambò.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giambò, R., Miritzis, J. & Pezzola, A. Late time evolution of negatively curved FLRW models. Eur. Phys. J. Plus 135, 367 (2020). https://doi.org/10.1140/epjp/s13360-020-00370-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00370-3

Navigation