Skip to main content
Log in

In situ atomic force microscopy: the case study of graphite immersed in aqueous NaOH electrolyte

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In situ atomic force microscopy (AFM) measures, with the scanner head immersed inside a liquid (namely an electrolyte), are—generally speaking—not easy to be acquired in real time, i.e., during electrochemical processes, the immersion of a massive and wide system (with respect to the electrochemical cell mean radius) can significantly perturb the electrolyte and the I/V profile of the electrochemical characterization (CV). Despite this fact, the information that can be obtained from an electrode morphological inspection is very precious, and the coupling between an AFM and an electrochemical cell is in any case successful. In this work, we discuss the surface morphological evolution of a graphite electrode when immersed inside an aqueous NaOH electrolyte. 1.0 M sodium hydroxide added inside electrochemical baths was shown to promote the intercalation of ions between the stratified graphite structure or graphene layers. Possible consequences of diluted NaOH electrolyte on the quality of the graphite basal plane have been never considered in detail yet. By means of an in situ AFM, we show the effects of CVs on the surface morphology of the graphite basal plane. Our result shows that a 1.0 M NaOH solution, generally used for promoting intercalation, changes the electrode surface quality as a consequence of a partial carbon corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Xu, Y. Dou, Z. Wei, J. Ma, Y. Deng, Y. Li, H. Liu, S. Dou, Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Adv. Sci. 4, 1700146 (2017)

    Article  Google Scholar 

  2. L.M. Viculis, J.J. Mack, O.M. Mayer, H. Thomas Hahn, R.B. Kaner, Intercalation and exfoliation routes to graphite nanoplateles. J. Mater. Chem. 15, 974 (2005)

    Article  Google Scholar 

  3. G. Bussetti, R. Yivlialin, D. Alliata, A. Li Bassi, C. Castiglioni et al., Disclosing the early stages of electrochemical anion intercalation in graphite by a combined atomic force microscopy/scanning tunneling microscopy approach. J. Phys. Chem. C 120, 6088 (2016)

    Article  Google Scholar 

  4. W. Rüdorff, Graphite intercalation compounds. Adv. Inorg. Chem. Radiochem. 1, 223 (1959)

    Article  Google Scholar 

  5. M. Scarselli, G. Ercolani, P. Castrucci, D. Monti, G. Bussetti, M. Russo, C. Goletti, P. Chiaradia, R. Paolesse, M. De Crescenzi, Surf. Sci. 601, 2607 (2007)

    Article  ADS  Google Scholar 

  6. V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 21, 1226419 (2013)

    Article  Google Scholar 

  7. Z.Y. Xia, S. Pezzini, E. Treossi, G. Giambastiani, F. Corticelli, V. Morandi, A. Zanelli, V. Bellani, V. Palermo, The exfoliation of graphene in liquids by electrochemical, chemical and sonication-assisted techniques: a nanoscale study. Adv. Funct. Mater. 23, 4684R (2013)

    Article  Google Scholar 

  8. R. Yivlialin, G. Bussetti, L. Magagnin, F. Ciccacci, L. Duò, Temporal analysis of blister evolution during anion intercalation in graphite. Phys. Chem. Chem. Phys. 19, 13855 (2017)

    Article  Google Scholar 

  9. R. Yivlialin, L. Magagnin, L. Duò, G. Bussetti, Blister evolution time invariance at very low electrolyte pH: H\(_2\)SO\(_4\)/graphite system investigated by electrochemical atomic force microscopy. Electrochim. Acta 276, 352 (2018)

    Article  Google Scholar 

  10. M. Jagadeesh, G. Bussetti, A. Calloni, R. Yivlialin, L. Brambilla et al., Incipient anion intercalation of highly oriented pyrolytic graphite close to the oxygen evolution potential: a combined X-ray photoemission and Raman spectroscopy study. J. Phys. Chem. C 123, 1790 (2019)

    Article  Google Scholar 

  11. A. Kavtun, E. Treossi, N. Mirotta, A. Scidà et al., Benchmarking of graphene-based materials: real commercial products versus ideal graphene. 2D Mater. 6, 025006 (2019)

    Article  Google Scholar 

  12. R. Yivlialin, G. Bussetti, M. Penconi, A. Bossi, F. Ciccacci, M. Finazzi, L. Duò, Vacuum-deposited porphyrin protective films on graphite: electrochemical atomic force microscopy investigation during anion intercalation. ACS Appl. Mater. Interfaces 9, 4100 (2017)

    Article  Google Scholar 

  13. W.W. Liu, J.N. Wang, Direct exfoliation of graphene in organic solvents with addition of NaOH. Chem. Commun. 24, 6888 (2011)

    Article  Google Scholar 

  14. Y. Yi, G. Weinberg, M. Prenzel, M. Greiner, S. Heumann, S. Becker, R. Schlögl, Electrochemical corrosion of a glassy carbon electrode. Catal. Today 295, 32 (2017)

    Article  Google Scholar 

  15. G. Inzelt, Pseudo-Reference Electrodes, Handbook of Reference Electrodes (Springer, Berlin, 2013), p. 331

    Book  Google Scholar 

  16. K.K. Kasem, S. Jones, Platinum as a reference electrode in electrochemical measurements. Platin. Met. Rev. 52, 100 (2008)

    Article  Google Scholar 

  17. J. Schneir, O. Marti, G. Rammers, D. Gläser, R. Sonnenfeld, B. Drake, P.K. Hansma, Scanning tunneling microscopy and atomic force microscopy of the liquid–solid interface. J. Vac. Sci Technol. A 6, 283 (1988)

    Article  ADS  Google Scholar 

  18. J.Y. Josefowicz, L. Xie, G.C. Farrington, Observation of intermediate CuCl species during the anodic dissolution of Cu using atomic force microscopy. J. Phys. Chem. 97, 11995 (1993)

    Article  Google Scholar 

  19. J. Wan, Y. Hao, Y. Shi, Y.-X. Song, H.-J. Yan, J. Zheng, R. Wen, L.-J. Wan, Ultra-thin solid electrolyte interphase evolution and wrinkling process in molybdenum disulfide-based lithium-ion batteries. Nat. Comm. 10, 3265 (2019)

    Article  ADS  Google Scholar 

  20. S. Wang, W. Zhang, Y. Chen, Z. Dai, C. Zhao, D. Wang, C. Shen, Operando study of Fe\(_3\)O\(_4\) anodes by electrochemical atomic force microscopy. Appl. Surf. Sci. 426, 217 (2017)

    Article  ADS  Google Scholar 

  21. Y. Gu, W.-W. Wang, J.-W. He, S. Tang, H.-Y. Xu, J.-W. Yan, Q.-H. Wu, X.-B. Lian, M.-S. Zheng, Q.-F. Dong, B.-W. Mao, Electrochemical polishing of lithium metal surface for highly demanding solid-electrolyte interface. ChemElectroChem 2, 181 (2019)

    Article  Google Scholar 

  22. L. Zheng, H.-J. Shim, Y. Cui, Y. Gao, K.-W. Lee, S.J. Hahn, S.G. Pyo, Development of a new electrochemical atomic force microscopy tool for obtaining surface morphology through electrochemical reaction. J. Nanosci. Nanotechnol. 19, 1242 (2019)

    Article  Google Scholar 

  23. R. Yivlialin, L. Brambilla, A. Accogli, E. Gibertini, M. Tommasini, C. Goletti, M. Leone, L. Duò, L. Magagnin, C. Castiglioni, G. Bussetti, Evidence of graphite blister evolution during the anion de-intercalation process in the cathodic regime. Appl. Surf. Sci. (in press)

  24. X. Duan, F. Xu, Y. Wang, L. Chang, Study of electrochemical oxidation of m-nitrophenol on various electrodes using cyclic voltammetry. Iran. J. Chem. Chem. Eng. 37, 129 (2018)

    Google Scholar 

  25. D. Alliata, R. Kötz, H. Siegenthaler, In situ AFM study of interlayer spacing during anion intercalation into HOPG in aqueous electrolyte. Langmuir 15, 8483 (1999)

    Article  Google Scholar 

  26. D. Alliata, P. Häring, O. Haas, R. Kötz, H. Siegenthaler, Anion intercalation into highly oriented pyrolytic graphite studied by electrochemical atomic force microscopy. Electrochem. Commun. 1, 5 (1999)

    Article  Google Scholar 

  27. C.A. Goss, J.C. Brumfield, E.A. Irene, R.W. Murray, Imaging the incipient electrochemical oxidation of highly oriented pyrolytic graphite. Anal. Chem. 65, 1378 (1993)

    Article  Google Scholar 

  28. R. Yivlialin, G. Bussetti, L. Brambilla, C. Castiglioni, M. Tommasini, L. Duò, M. Passoni, M. Ghidelli, C.S. Casari, A. Li Bassi, Microscopic analysis of the different perchlorate anions intercalation stages of graphite. J. Phys. Chem. C 121, 14246 (2017)

    Article  Google Scholar 

  29. R. Piner, R.S. Ruoff, Cross talk between friction and height signals in atomic force microscopy. Rev. Sci. Instrum. 73, 3392 (2002)

    Article  ADS  Google Scholar 

  30. M. Campione, S. Trabattoni, M. Moret, Nanoscale mapping of frictional anisotropy. Tribol. Lett. 45, 219 (2012)

    Article  Google Scholar 

  31. M. Campione, G.C. Capitani, Subduction-zone earthquake complexity related to frictional anisotropy in antigorite. Nat. Geosci. 6, 847 (2013)

    Article  ADS  Google Scholar 

  32. F. Scholz, Electroanalytical methods, guide to experiments and applications (Springer, Berlin, 2010)

    Google Scholar 

Download references

Acknowledgements

This work was realized at the Solid–Liquid Interface and Nanomicroscopy (SoLINano) lab, which is an inter-Departmental laboratory financed and supported by the Politecnico di Milano. Authors also thank the Regione Lombardia—Fondazione Cariplo joint project ‘SmartMatLab Centre’ where vacuum-deposited thin films were prepared; the Project “I-ZEB Verso Edifici Intelligenti a Energia Zero per la crescita della città intelligente” in the framework of ‘Accordo Quadro tra Regione Lombardia e Consiglio Nazionale delle Ricerche’ and the Project PRIN2017 “3D-FARE: Functional 3D Architectures for Electrochemiluminescence applications—Prot.\(\hbox {n}^\circ \) 2017FJCPEX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Bossi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 1203 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bussetti, G., Campione, M., Bossi, A. et al. In situ atomic force microscopy: the case study of graphite immersed in aqueous NaOH electrolyte. Eur. Phys. J. Plus 135, 329 (2020). https://doi.org/10.1140/epjp/s13360-020-00333-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00333-8

Navigation