Skip to main content

Local Electrochemical Characterization Using Scanning Electrochemical Cell Microscopy

  • Chapter
  • First Online:
Scanning Ion Conductance Microscopy

Part of the book series: Bioanalytical Reviews ((BIOREV,volume 3))

  • 416 Accesses

Abstract

Scanning electrochemical cell microscopy (SECCM) is a unique tool for nanoscale electrochemical imaging for characterizing sample reactivity. It uses a mobile meniscus state electrochemical cell between the nanopipette and the sample.

The chapter describes the method setup and principles as well as its reported applications in materials sciences. SECCM was successfully used to image various types of reactions such as hydrogen/oxygen evolution, oxygen/CO2 reduction, corrosion, photocatalysis, and charge/discharge processes in battery materials. The studied objects included carbon phases: diamond and graphite with their derivatives; polymers; transitional metal dichalcogenides; metals; Li complex oxides. SECCM demonstrated site-dependent electrochemical activity, particularly, the role of defects and grain boundaries. Combination of SECCM with EBSD provided the information about the correlation between electrochemical reactivity and terminating facet in multiple kinds of 3D materials.

Moreover, SECCM can be used not only to image but also to build new patterned on-surface (sub)microstructures by loading the precursors into the pipette or by site-dependent electrooxidation/reduction of the surface. Thus, the advantages and goals of SECCM for various applications are described in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49(1):57–61

    Article  Google Scholar 

  2. Polcari D, Dauphin-Ducharme P, Mauzeroll J (2016) Scanning electrochemical microscopy: a comprehensive review of experimental parameters from 1989 to 2015. Chem Rev 116(22):13234–13278

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi Y, Kumatani A, Shiku H, Matsue T (2017) Scanning probe microscopy for nanoscale electrochemical imaging. Anal Chem 89(1):342–357

    Article  CAS  PubMed  Google Scholar 

  4. Macpherson JV, Unwin PR, Hillier AC, Bard AJ (1996) In-situ imaging of ionic crystal dissolution using an integrated electrochemical/AFM probe. J Am Chem Soc 118(27):6445–6452

    Article  CAS  Google Scholar 

  5. Kueng A, Kranz C, Lugstein A, Bertagnolli E, Mizaikoff B (2003) Integrated AFM-SECM in tapping mode: simultaneous topographical and electrochemical imaging of enzyme activity. Angew Chem Int Ed 42(28):3238–3240

    Article  CAS  Google Scholar 

  6. Turcu F, Schulte A, Hartwich G, Schuhmann W (2004) Label-free electrochemical recognition of DNA hybridization by means of modulation of the feedback current in SECM. Angew Chem Int Ed 43(26):3482–3485

    Article  CAS  Google Scholar 

  7. Kurulugama RT, Wipf DO, Takacs SA, Pongmayteegul S, Garris PA, Baur JE (2005) Scanning electrochemical microscopy of model neurons: constant distance imaging. Anal Chem 77(4):1111–1117

    Article  CAS  PubMed  Google Scholar 

  8. Zhao XC, Diakowski PM, Ding ZF (2010) Deconvoluting topography and spatial physiological activity of live macrophage cells by scanning electrochemical microscopy in constant-distance mode. Anal Chem 82(20):8371–8373

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi Y, Shevchuk AI, Novak P, Zhang YJ, Ebejer N, Macpherson JV, Unwin PR, Pollard AJ, Roy D, Clifford CA, Shiku H, Matsue T, Klenerman D, Korchev YE (2011) Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces. Angew Chem Int Ed 50(41):9638–9642

    Article  CAS  Google Scholar 

  10. Takahashi Y, Shevchuk AI, Novak P, Murakami Y, Shiku H, Korchev YE, Matsue T (2010) Simultaneous noncontact topography and electrochemical imaging by SECM/SICM featuring ion current feedback regulation. J Am Chem Soc 132(29):10118–10126

    Article  CAS  PubMed  Google Scholar 

  11. Comstock DJ, Elam JW, Pellin MJ, Hersam MC (2010) Integrated ultramicroelectrode-nanopipet probe for concurrent scanning electrochemical microscopy and scanning ion conductance microscopy. Anal Chem 82(4):1270–1276

    Article  CAS  PubMed  Google Scholar 

  12. Ebejer N, Schnippering M, Colburn AW, Edwards MA, Unwin PR (2010) Localized high resolution electrochemistry and multifunctional imaging: scanning electrochemical cell microscopy. Anal Chem 82(22):9141–9145

    Article  CAS  PubMed  Google Scholar 

  13. Williams CG, Edwards MA, Colley AL, Macpherson JV, Unwin PR (2009) Scanning micropipet contact method for high-resolution imaging of electrode surface redox activity. Anal Chem 81(7):2486–2495

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi Y, Kumatani A, Munakata H, Inomata H, Ito K, Ino K, Shiku H, Unwin PR, Korchev YE, Kanamura K, Matsue T (2014) Nanoscale visualization of redox activity at lithium-ion battery cathodes. Nat Commun 5:5450

    Article  PubMed  Google Scholar 

  15. Takahashi Y, Kobayashi Y, Wang ZQ, Ito Y, Ota M, Ida H, Kumatani A, Miyazawa K, Fujita T, Shiku H, Korchev YE, Miyata Y, Fukuma T, Chen MW, Matsue T (2020) High-resolution electrochemical mapping of the hydrogen evolution reaction on transition-metal Dichalcogenide Nanosheets. Angew Chem Int Ed 59(9):3601–3608

    Article  CAS  Google Scholar 

  16. Momotenko D, Byers JC, McKelvey K, Kang M, Unwin PR (2015) High-speed electrochemical imaging. ACS Nano 9(9):8942–8952

    Article  CAS  PubMed  Google Scholar 

  17. Guell AG, Ebejer N, Snowden ME, McKelvey K, Macpherson JV, Unwin PR (2012) Quantitative nanoscale visualization of heterogeneous electron transfer rates in 2D carbon nanotube networks. Proc Natl Acad Sci U S A 109(29):11487–11492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guell AG, Meadows KE, Dudin PV, Ebejer N, Byers JC, Macpherson JV, Unwin PR (2014) Selection, characterisation and mapping of complex electrochemical processes at individual single-walled carbon nanotubes: the case of serotonin oxidation. Faraday Discuss 172:439–455

    Article  CAS  PubMed  Google Scholar 

  19. Güell AG, Meadows KE, Dudin PV, Ebejer N, Macpherson JV, Unwin PR (2014) Mapping nanoscale electrochemistry of individual single-walled carbon nanotubes. Nano Lett 14(1):220–224

    Article  PubMed  Google Scholar 

  20. Guell AG, Ebejer N, Snowden ME, Macpherson JV, Unwin PR (2012) Structural correlations in heterogeneous electron transfer at monolayer and multilayer graphene electrodes. J Am Chem Soc 134(17):7258–7261

    Article  CAS  PubMed  Google Scholar 

  21. Patel AN, Collignon MG, O'Connell MA, Hung WO, McKelvey K, Macpherson JV, Unwin PR (2012) A new view of electrochemistry at highly oriented pyrolytic graphite. J Am Chem Soc 134(49):20117–20130

    Article  CAS  PubMed  Google Scholar 

  22. Patel AN, McKelvey K, Unwin PR (2012) Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces. J Am Chem Soc 134(50):20246–20249

    Article  CAS  PubMed  Google Scholar 

  23. Zhang GH, Kirkman PM, Patel AN, Cuharuc AS, McKelvey K, Unwin PR (2014) Molecular functionalization of graphite surfaces: basal plane versus step edge electrochemical activity. J Am Chem Soc 136(32):11444–11451

    Article  CAS  PubMed  Google Scholar 

  24. Guell AG, Cuharuc AS, Kim YR, Zhang GH, Tan SY, Ebejer N, Unwin PR (2015) Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges. ACS Nano 9(4):3558–3571

    Article  CAS  PubMed  Google Scholar 

  25. Maddar FM, Lazenby RA, Patel AN, Unwin PR (2016) Electrochemical oxidation of dihydronicotinamide adenine dinucleotide (NADH): comparison of highly oriented pyrolytic graphite (HOPG) and polycrystalline boron-doped diamond (pBDD) electrodes. Phys Chem Chem Phys 18(38):26404–26411

    Article  CAS  PubMed  Google Scholar 

  26. Sharel PE, Kim YR, Perry D, Bentley CL, Unwin PR (2016) Nanoscale electrocatalysis of hydrazine electro-oxidation at blistered graphite electrodes. ACS Appl Mater Interfaces 8(44):30458–30466

    Article  Google Scholar 

  27. Zhang G, Guell AG, Kirkman PM, Lazenby RA, Miller TS, Unwin PR (2016) Versatile polymer-free graphene transfer method and applications. ACS Appl Mater Interfaces 8(12):8008–8016

    Article  CAS  PubMed  Google Scholar 

  28. Zhang G, Tan SY, Patel AN, Unwin PR (2016) Electrochemistry of Fe(3+/2+) at highly oriented pyrolytic graphite (HOPG) electrodes: kinetics, identification of major electroactive sites and time effects on the response. Phys Chem Chem Phys 18(47):32387–32395

    Article  CAS  PubMed  Google Scholar 

  29. Kumatani A, Miura C, Kuramochi H, Ohto T, Wakisaka M, Nagata Y, Ida H, Takahashi Y, Hu KL, Jeong S, Fujita J, Matsue T, Ito Y (2019) Chemical dopants on edge of holey graphene accelerate electrochemical hydrogen evolution reaction. Adv Sci 6(10)

    Google Scholar 

  30. Martin-Yerga D, Costa-Garcia A, Unwin PR (2019) Correlative voltammetric microscopy: structure-activity relationships in the microscopic electrochemical behavior of screen printed carbon electrodes. Acs Sensors 4(8):2173

    Article  CAS  PubMed  Google Scholar 

  31. Thompson AC, Simpson BH, Lewis NS (2020) Macroscale and nanoscale photoelectrochemical behavior of p-type Si(111) covered by a single layer of graphene or hexagonal boron nitride. ACS Appl Mater Interfaces 12(10):11551–11561

    Article  CAS  PubMed  Google Scholar 

  32. Patten HV, Lai SCS, Macpherson JV, Unwin PR (2012) Active sites for outer-sphere, inner-sphere, and complex multistage electrochemical reactions at polycrystalline boron-doped diamond electrodes (pBDD) revealed with scanning electrochemical cell microscopy (SECCM). Anal Chem 84(12):5427–5432

    Article  CAS  PubMed  Google Scholar 

  33. Kirkman PM, Guell AG, Cuharuc AS, Unwin PR (2014) Spatial and temporal control of the diazonium modification of sp(2) carbon surfaces. J Am Chem Soc 136(1):36–39

    Article  CAS  PubMed  Google Scholar 

  34. Patten HV, Hutton LA, Webb JR, Newton ME, Unwin PR, Macpherson JV (2015) Electrochemical “read–write” microscale patterning of boron doped diamond electrodes. Chem Commun 51(1):164–167

    Article  CAS  Google Scholar 

  35. Tomlinson LI, Patten HV, Green BL, Iacobini J, Meadows KE, McKelvey K, Unwin PR, Newton ME, Macpherson JV (2016) Intermittent-contact scanning electrochemical microscopy (IC-SECM) as a quantitative probe of defects in single crystal boron doped diamond electrodes. Electroanalysis 28(10):2297–2302

    Article  CAS  Google Scholar 

  36. Liu D-Q, Chen C-H, Perry D, West G, Cobb SJ, Macpherson JV, Unwin PR (2018) Facet-resolved electrochemistry of polycrystalline boron-doped diamond electrodes: microscopic factors determining the solvent window in aqueous potassium chloride solutions. ChemElectroChem 5(20):3028–3035

    Article  CAS  Google Scholar 

  37. Chen CH, Meadows KE, Cuharuc A, Lai SCS, Unwin PR (2014) High resolution mapping of oxygen reduction reaction kinetics at polycrystalline platinum electrodes. Phys Chem Chem Phys 16(34):18545–18552

    Article  CAS  PubMed  Google Scholar 

  38. Bentley CL, Kang M, Maddar FM, Li FW, Walker M, Zhang J, Unwin PR (2017) Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS2): basal vs. edge plane activity. Chem Sci 8(9):6583–6593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bentley CL, Andronescu C, Smialkowski M, Kang M, Tarnev T, Marler B, Unwin PR, Apfel UP, Schuhmann W (2018) Local surface structure and composition control the hydrogen evolution reaction on iron nickel sulfides. Angew Chem Int Ed 57(15):4093–4097

    Article  CAS  Google Scholar 

  40. Hill JW, Hill CM (2019) Directly mapping photoelectrochemical behavior within individual transition metal dichalcogenide nanosheets. Nano Lett 19(8):5710–5716

    Article  CAS  PubMed  Google Scholar 

  41. Wang YF, Gordon E, Ren H (2019) Mapping the nucleation of H-2 bubbles on polycrystalline Pt via scanning electrochemical cell microscopy. J Phys Chem Lett 10(14):3887–3892

    Article  CAS  PubMed  Google Scholar 

  42. Yule LC, Shkirskiy V, Aarons J, West G, Bentley CL, Shollock BA, Unwin PR (2019) Nanoscale active sites for the hydrogen evolution reaction on low carbon steel. J Phys Chem C 123(39):24146–24155

    Article  CAS  Google Scholar 

  43. Bentley CL, Agoston R, Tao BL, Walker M, Xu XD, O'Mullane AP, Unwin PR (2020) Correlating the local electrocatalytic activity of amorphous molybdenum sulfide thin films with microscopic composition, structure, and porosity. ACS Appl Mater Interfaces 12(39):44307–44316

    Article  CAS  PubMed  Google Scholar 

  44. Hill JW, Fu ZG, Tian JF, Hill CM (2020) Locally engineering and interrogating the photoelectrochemical behavior of defects in transition metal dichalcogenides. J Phys Chem C 124(31):17141–17149

    Article  CAS  Google Scholar 

  45. Strange LE, Yadav J, Garg S, Shinde PS, Hill JW, Hill CM, Kung P, Pan SL (2020) Investigating the redox properties of two-dimensional MoS2 using photoluminescence spectroelectrochemistry and scanning electrochemical cell microscopy. J Phys Chem Lett 11(9):3488–3494

    Article  CAS  PubMed  Google Scholar 

  46. Tao BL, Unwin PR, Bentley CL (2020) Nanoscale variations in the electrocatalytic activity of layered transition-metal dichalcogenides. J Phys Chem C 124(1):789–798

    Article  CAS  Google Scholar 

  47. Yule LC, Daviddi E, West G, Bentley CL, Unwin PR (2020) Surface microstructural controls on electrochemical hydrogen absorption at polycrystalline palladium. J Electroanal Chem 872

    Google Scholar 

  48. Mariano RG, McKelvey K, White HS, Kanan MW (2017) Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358(6367):1187–1192

    Article  CAS  PubMed  Google Scholar 

  49. Tsujiguchi T, Kawabe Y, Jeong S, Ohto T, Kukunuri S, Kuramochi H, Takahashi Y, Nishiuchi T, Masuda H, Wakisaka M, Hu K, Elumalai G, Fujita J-I, Ito Y (2021) Acceleration of electrochemical CO2 reduction to formate at the Sn/reduced graphene oxide Interface. ACS Catal 11(6):3310–3318

    Article  CAS  Google Scholar 

  50. Mariano RG, Kang M, Wahab OJ, McPherson IJ, Rabinowitz JA, Unwin PR, Kanan MW (2021) Microstructural origin of locally enhanced CO2 electroreduction activity on gold. Nat Mater 20:1000–1006

    Article  CAS  PubMed  Google Scholar 

  51. Sharel PE, Kang M, Wilson P, Meng L, Perry D, Basile A, Unwin PR (2018) High resolution visualization of the redox activity of Li2O2 in non-aqueous media: conformal layer vs. toroid structure. Chem Commun (Camb) 54(24):3053–3056

    Article  CAS  Google Scholar 

  52. Dayeh M, Ghavidel MRZ, Mauzeroll J, Schougaard SB (2019) Micropipette contact method to investigate high-energy cathode materials by using an ionic liquid. ChemElectroChem 6(1):195–201

    Article  CAS  Google Scholar 

  53. Inomata H, Takahashi Y, Takamatsu D, Kumatani A, Ida H, Shiku H, Matsue T (2019) Visualization of inhomogeneous current distribution on ZrO2-coated LiCoO2 thin-film electrodes using scanning electrochemical cell microscopy. Chem Commun 55(4):545–548

    Article  CAS  Google Scholar 

  54. Kumatani A, Takahashi Y, Miura C, Ida H, Inomata H, Shiku H, Munakata H, Kanamura K, Matsue T (2019) Scanning electrochemical cell microscopy for visualization and local electrochemical activities of lithium-ion (de) intercalation process in lithium-ion batteries electrodes. Surf Interface Anal 51(1):27–30

    Article  CAS  Google Scholar 

  55. Tao BL, Yule LC, Daviddi E, Bentley CL, Unwin PR (2019) Correlative electrochemical microscopy of Li-ion (De)intercalation at a series of individual LiMn2O4 particles. Angew Chem Int Ed 58(14):4606–4611

    Article  CAS  Google Scholar 

  56. Takahashi Y, Yamashita T, Takamatsu D, Kumatani A, Fukuma T (2020) Nanoscale kinetic imaging of lithium ion secondary battery materials using scanning electrochemical cell microscopy. Chem Commun 56(65):9324–9327

    Article  CAS  Google Scholar 

  57. Yule LC, Bentley CL, West G, Shollock BA, Unwin PR (2019) Scanning electrochemical cell microscopy: a versatile method for highly localised corrosion related measurements on metal surfaces. Electrochim Acta 298:80–88

    Article  CAS  Google Scholar 

  58. Li YJ, Morel A, Gallant D, Mauzeroll J (2020) Oil-immersed scanning micropipette contact method enabling long-term corrosion mapping. Anal Chem 92(18):12415–12422

    Article  CAS  PubMed  Google Scholar 

  59. Liu SY, Shi M, Zhou YH, Li RX, Xie ZD, Hu DB, Zhang MQ, Hu G (2020) Scanning electrochemical cell microscopy: a powerful method to study the intergranular corrosions of archaeological silver artifacts. J Cult Herit 46:176–183

    Article  Google Scholar 

  60. Yule LC, Shkirskiy V, Aarons J, West G, Shollock BA, Bentley CL, Unwin PR (2020) Nanoscale electrochemical visualization of grain-dependent anodic iron dissolution from low carbon steel. Electrochim Acta 332

    Google Scholar 

  61. Aaronson BD, Garoz-Ruiz J, Byers JC, Colina A, Unwin PR (2015) Electrodeposition and screening of photoelectrochemical activity in conjugated polymers using scanning electrochemical cell microscopy. Langmuir 31(46):12814–12822

    Article  CAS  PubMed  Google Scholar 

  62. Aaronson BDB, Byers JC, Colburn AW, McKelvey K, Unwin PR (2015) Scanning electrochemical cell microscopy platform for ultrasensitive photoelectrochemical imaging. Anal Chem 87(8):4129–4133

    Article  CAS  PubMed  Google Scholar 

  63. Ebejer N, Guell AG, Lai SCS, McKelvey K, Snowden ME, Unwin PR (2013) Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. Annu Rev Anal Chem 6:329–351

    Article  CAS  Google Scholar 

  64. Barton ZJ, Rodriguez-Lopez J (2016) Emerging scanning probe approaches to the measurement of ionic reactivity at energy storage materials. Anal Bioanal Chem 408(11):2707–2715

    Article  CAS  PubMed  Google Scholar 

  65. Kang MY, Momotenko D, Page A, Perry D, Unwin PR (2016) Frontiers in nanoscale electrochemical imaging: faster, multifunctional, and ultrasensitive. Langmuir 32(32):7993

    Article  CAS  PubMed  Google Scholar 

  66. Bentley CL, Kang MY, Unwin PR (2017) Scanning electrochemical cell microscopy: new perspectives on electrode processes in action. Curr Opin Electrochem 6(1):23–30

    Article  CAS  Google Scholar 

  67. Danis L, Gateman SM, Kuss C, Schougaard SB, Mauzeroll J (2017) Nanoscale measurements of lithium-ion-battery materials using scanning probe techniques. ChemElectroChem 4(1):6–19

    Article  CAS  Google Scholar 

  68. Bentley CL, Unwin PR (2018) Nanoscale electrochemical movies and synchronous topographical mapping of electrocatalytic materials. Faraday Discuss 210:365–379

    Article  CAS  PubMed  Google Scholar 

  69. Wahab OJ, Kang M, Unwin PR (2020) Scanning electrochemical cell microscopy: a natural technique for single entity electrochemistry. Curr Opin Electrochem 22:120–128

    Article  CAS  Google Scholar 

  70. Ventosa E (2021) Why nanoelectrochemistry is necessary in battery research? Curr Opin Electrochem 25:100635

    Article  CAS  Google Scholar 

  71. Dang N, Etienne M, Walcarius A, Liu L (2018) Scanning gel electrochemical microscopy (SGECM): the potentiometric measurements. Electrochem Commun 97:64–67

    Article  CAS  Google Scholar 

  72. Dang N, Etienne M, Walcarius A, Liu L (2020) Scanning gel electrochemical microscopy (SGECM): lateral physical resolution by current and shear force feedback. Anal Chem 92(9):6415–6422

    Article  CAS  PubMed  Google Scholar 

  73. Ando T, Asai K, Macpherson J, Einaga Y, Fukuma T, Takahashi Y (2021) Nanoscale reactivity mapping of a single-crystal boron-doped diamond particle. Anal Chem 93(14):5831–5838

    Article  CAS  PubMed  Google Scholar 

  74. Rhatigan S, Michel MC, Nolan M (2020) Hydrogen evolution on non-metal oxide catalysts. J Phys-Energy 2(4)

    Google Scholar 

  75. Aaronson BDB, Chen CH, Li HJ, Koper MTM, Lai SCS, Unwin PR (2013) Pseudo-single-crystal electrochemistry on polycrystalline electrodes: visualizing activity at grains and grain boundaries on platinum for the Fe2+/Fe3+ redox reaction. J Am Chem Soc 135(10):3873–3880

    Article  CAS  PubMed  Google Scholar 

  76. Aaronson BDB, Lai SCS, Unwin PR (2014) Spatially resolved electrochemistry in ionic liquids: surface structure effects on triiodide reduction at platinum electrodes. Langmuir 30(7):1915–1919

    Article  CAS  PubMed  Google Scholar 

  77. Chen CH, Jacobse L, McKelvey K, Lai SCS, Koper MTM, Unwin PR (2015) Voltammetric scanning electrochemical cell microscopy: dynamic imaging of hydrazine electro-oxidation on platinum electrodes. Anal Chem 87(11):5782–5789

    Article  CAS  PubMed  Google Scholar 

  78. Shkirskiy V, Yule LC, Daviddi E, Bentley CL, Aarons J, West G, Unwin PR (2020) Nanoscale scanning electrochemical cell microscopy and correlative surface structural analysis to map anodic and cathodic reactions on polycrystalline Zn in acid media. J Electrochem Soc 167(4)

    Google Scholar 

  79. Wang YF, Gordon E, Ren H (2020) Mapping the potential of zero charge and electrocatalytic activity of metal-electrolyte Interface via a grain-by-grain approach. Anal Chem 92(3):2859–2865

    Article  CAS  PubMed  Google Scholar 

  80. Saha P, Hill JW, Walmsley JD, Hill CM (2018) Probing electrocatalysis at individual Au nanorods via correlated optical and electrochemical measurements. Anal Chem 90(21):12832–12839

    Article  CAS  PubMed  Google Scholar 

  81. Lai SCS, Dudin PV, Macpherson JV, Unwin PR (2011) Visualizing zeptomole (electro)catalysis at single nanoparticles within an ensemble. J Am Chem Soc 133(28):10744–10747

    Article  CAS  PubMed  Google Scholar 

  82. Snowden ME, Dayeh M, Payne NA, Gervais S, Mauzeroll J, Schougaard SB (2016) Measurement on isolated lithium iron phosphate particles reveals heterogeneity in material properties distribution. J Power Sources 325:682–689

    Article  CAS  Google Scholar 

  83. Ustarroz J, Ornelas IM, Zhang GH, Perry D, Kang M, Bentley CL, Walker M, Unwin PR (2018) Mobility and poisoning of mass-selected platinum nanoclusters during the oxygen reduction reaction. ACS Catal 8(8):6775–6790

    Article  CAS  Google Scholar 

  84. Tarnev T, Aiyappa HB, Botz A, Erichsen T, Ernst A, Andronescu C, Schuhmann W (2019) Scanning electrochemical cell microscopy investigation of single ZIF-derived nanocomposite particles as electrocatalysts for oxygen evolution in alkaline media. Angew Chem Int Ed 58(40):14265–14269

    Article  CAS  Google Scholar 

  85. Choi M, Siepser NP, Jeong S, Wang Y, Jagdale G, Ye XC, Baker LA (2020) Probing single-particle electrocatalytic activity at facet-controlled gold nanocrystals. Nano Lett 20(2):1233–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhan DP, Yang DZ, Zhu YL, Wu XR, Tian ZQ (2012) Fabrication and characterization of nanostructured ZnO thin film microdevices by scanning electrochemical cell microscopy. Chem Commun 48(93):11449–11451

    Article  CAS  Google Scholar 

  87. Oseland EE, Ayres ZJ, Basile A, Haddleton DM, Wilson P, Unwin PR (2016) Surface patterning of polyacrylamide gel using scanning electrochemical cell microscopy (SECCM). Chem Commun 52(64):9929–9932

    Article  CAS  Google Scholar 

  88. McKelvey K, O'Connell MA, Unwin PR (2013) Meniscus confined fabrication of multidimensional conducting polymer nanostructures with scanning electrochemical cell microscopy (SECCM). Chem Commun 49(29):2986–2988

    Article  CAS  Google Scholar 

  89. Dokko K, Fujita Y, Mohamedi M, Umeda M, Uchida I, Selman JR (2001) Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: part II. Disordered carbon. Electrochim Acta 47(6):933–938

    Article  CAS  Google Scholar 

  90. Dokko K, Mohamedi M, Fujita Y, Itoh T, Nishizawa M, Umeda M, Uchida I (2001) Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods. J Electrochem Soc 148(5):A422–A426

    Article  CAS  Google Scholar 

  91. Dokko K, Mohamedi M, Umeda M, Uchida I (2003) Kinetic study of Li-ion extraction and insertion at LiMn2 O 4 single particle electrodes using potential step and impedance methods. J Electrochem Soc 150(4):A425–A429

    Article  CAS  Google Scholar 

  92. Munakata H, Takemura B, Saito T, Kanamura K (2012) Evaluation of real performance of LiFePO4 by using single particle technique. J Power Sources 217:444–448

    Article  CAS  Google Scholar 

  93. Hui JS, Burgess M, Zhang JR, Rodriguez-Lopez J (2016) Layer number dependence of Li+ intercalation on few-layer graphene and electrochemical imaging of its solid-electrolyte interphase evolution. ACS Nano 10(4):4248–4257

    Article  CAS  PubMed  Google Scholar 

  94. Zampardi G, Ventosa E, La Mantia F, Schuhmann W (2015) Scanning electrochemical microscopy applied to the investigation of lithium (De-)insertion in TiO2. Electroanalysis 27(4):1017–1025

    Article  CAS  Google Scholar 

  95. Zampardi G, La Mantia F, Schuhmann W (2015) In-operando evaluation of the effect of vinylene carbonate on the insulating character of the solid electrolyte interphase. Electrochem Commun 58:1–5

    Article  CAS  Google Scholar 

  96. Ventosa E, Schuhmann W (2015) Scanning electrochemical microscopy of Li-ion batteries. Phys Chem Chem Phys 17(43):28441–28450

    Article  CAS  PubMed  Google Scholar 

  97. Bulter H, Peters F, Schwenzel J, Wittstock G (2014) Spatiotemporal changes of the solid electrolyte interphase in lithium-ion batteries detected by scanning electrochemical microscopy. Angew Chem Int Ed 53(39):10531–10535

    Article  Google Scholar 

  98. Barton ZJ, Rodríguez-López J (2014) Lithium ion quantification using mercury amalgams as in situ electrochemical probes in nonaqueous media. Anal Chem 86(21):10660–10667

    Article  CAS  PubMed  Google Scholar 

  99. Chen Z, Qin Y, Amine K, Sun YK (2010) Role of surface coating on cathode materials for lithium-ion batteries. J Mater Chem 20(36):7606–7612

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasufumi Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Makarova, M.V., Takahashi, Y. (2021). Local Electrochemical Characterization Using Scanning Electrochemical Cell Microscopy. In: Schäffer, T.E. (eds) Scanning Ion Conductance Microscopy. Bioanalytical Reviews, vol 3. Springer, Cham. https://doi.org/10.1007/11663_2021_12

Download citation

Publish with us

Policies and ethics