Skip to main content
Log in

Study of static charged spherical structure in f(RTQ) gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We generalize the definition of complexity for self-gravitating object proposed by Herrera (Phys Rev D 97(4):044010, 2018), for the case of charged spherical matter distribution in f(RTQ) theory of gravity, where R and T represent the Ricci scalar and the trace of the energy–momentum tensor, respectively, and \(Q\equiv R_{\mu \nu }T^{\mu \nu }\). We split the Riemann tensor orthogonally to determine the modified structure scalars, and one of these scalars has been found to be involved in the emergence of complexity of the system. We consider the vanishing of the complexity factor to study some mathematical models of field equations under the influence of dark source terms of f(RTQ) gravity. By applying the restriction, \(f(R,T,Q)=R\), one can get all these results in general relativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Herrera, Phys. Rev. D. 97(4), 044010 (2018)

    ADS  MathSciNet  Google Scholar 

  2. K. Bamba, S. Nojiri, S.D. Odintsov, arXiv preprint arXiv:1302.4831 (2013)

  3. Z. Yousaf, K. Bamba, M.Z. Bhatti, Phys. Rev. D 93(12), 124048 (2016)

    ADS  MathSciNet  Google Scholar 

  4. S. Nojiri, S.D. Odintsov, arXiv preprint arXiv:0807.0685 (2008)

  5. S. Nojiri, S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4(01), 115 (2007)

    MathSciNet  Google Scholar 

  6. S. Capozziello, M. De Laurentis, S.D. Odintsov, A. Stabile, Phys. Rev. D 83, 064004 (2011)

    ADS  Google Scholar 

  7. T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, Phys. Rev. D 84(2), 024020 (2011)

    ADS  Google Scholar 

  8. E.H. Baffou, A.V. Kpadonou, M.E. Rodrigues, M.J.S. Houndjo, J. Tossa, Astrophys. Space Sci. 356(1), 173 (2015)

    ADS  Google Scholar 

  9. M. Houndjo, Int. J. Mod. Phys. D. 21(01), 1250003 (2012)

    ADS  MathSciNet  Google Scholar 

  10. Z. Yousaf, K. Bamba, M.Z. Bhatti, Phys. Rev. D 93(6), 064059 (2016)

    ADS  Google Scholar 

  11. P.K. Sahoo, P. Sahoo, B.K. Bishi, Int. J. Geom. Methods Mod. Phys. 14(06), 1750097 (2017)

    MathSciNet  Google Scholar 

  12. B. Mishra, S. Tarai, S.K. Tripathy, Mod. Phys. Lett. A 33, 1850170 (2018)

    ADS  Google Scholar 

  13. Z. Yousaf, Phys. Dark Universe 28, 100509 (2020)

    Google Scholar 

  14. M.Z. Bhatti, Z. Yousaf, M. Yousaf, Phys. Dark Universe 28, 100501 (2020)

    Google Scholar 

  15. Z. Haghani, T. Harko, F.S.N. Lobo, H.R. Sepangi, S. Shahidi, Phys. Rev. D 88(4), 044023 (2013)

    ADS  Google Scholar 

  16. S.D. Odintsov, D. Sáez-Gómez, Phys. Lett. B. 725(4), 437–444 (2013)

    ADS  MathSciNet  Google Scholar 

  17. E.H. Baffou, M.J.S. Houndjo, J. Tosssa, Astrophys. Space Sci. 361(12), 376 (2016)

    ADS  Google Scholar 

  18. I. Ayuso, J.B. Jiménez, Á. de la Cruz-Dombriz, Phys. Rev. D. 91(10), 104003 (2015)

    ADS  MathSciNet  Google Scholar 

  19. Z. Yousaf, M.Z. Bhatti, U. Farwa, Mon. Not. R. Astron. Soc. 464, 4509 (2017)

    ADS  Google Scholar 

  20. Z. Yousaf, M.Z. Bhatti, U. Farwa, Class. Quantum Grav. 34, 145002 (2017)

    ADS  Google Scholar 

  21. Z. Yousaf, K. Bamba, M.Z. Bhatti, U. Farwa, Eur. Phys. J. A 54, 122 (2018)

    ADS  Google Scholar 

  22. M.Z. Bhatti, K. Bamba, Z. Yousaf, M. Nawaz, J. Cosmol. Astropart. Phys. 09, 011 (2019)

    ADS  Google Scholar 

  23. R. Lopez-Ruiz, H.L. Mancini, X. Calbet, Phys. Lett. A 209(5–6), 321–326 (1995)

    ADS  Google Scholar 

  24. X. Calbet, R. López-Ruiz, Phys. Rev. E. 63(6), 066116 (2001)

    ADS  Google Scholar 

  25. R.G. Catalán, J. Garay, R. López-Ruiz, Phys. Rev. E 66(1), 011102 (2002)

    ADS  Google Scholar 

  26. L. Herrera, J. Ospino, A. Di Prisco, E. Fuenmayor, O. Troconis, Phys. Rev. D 79(6), 064025 (2009)

    ADS  MathSciNet  Google Scholar 

  27. M.G.B. de Avellar, J.E. Horvath, arXiv preprint arXiv:1308.1033 (2013)

  28. R.A. de Souza, M.G.B. de Avellar, J.E. Horvath, arXiv preprint arXiv:1308.3519 (2013)

  29. R.C. Tolman, Phys. Rev. 35(8), 875 (1930)

    ADS  Google Scholar 

  30. M.Z. Bhatti, Z. Yousaf, A. Yousaf, Mod. Phys. Lett. A 34, 1950012 (2019)

    ADS  Google Scholar 

  31. M.Z. Bhatti, Z. Yousaf, A. Yousaf, Int. J. Geo. Methods Mod. Phys. 16, 1950041 (2019)

    Google Scholar 

  32. Z. Yousaf, Astrophys. Space Sci. 363(11), 226 (2018)

    ADS  Google Scholar 

  33. Z. Yousaf, Eur. Phys. J. Plus. 134(5), 245 (2019)

    Google Scholar 

  34. Z. Yousaf, Mod. Phys. Lett. A. 34, 1950333 (2019)

    ADS  MathSciNet  Google Scholar 

  35. M. Sharif, I.I. Butt, Eur. Phys. J. C. 78, 688 (2018)

    ADS  Google Scholar 

  36. G. Abbas, H. Nazar, Eur. Phys. J. C. 78(6), 510 (2018)

    ADS  Google Scholar 

  37. L. Herrera, A. Di Prisco, J. Ibáñez, Phys. Rev. D 84(10), 107501 (2011)

    ADS  Google Scholar 

  38. C.P. Panos, N.S. Nikolaidis, K.C. Chatzisavvas, C.C. Tsouros, Phys. Lett. A 373(27), 2343 (2009)

    ADS  Google Scholar 

  39. B. Ivanov, Astrophys. Space Sci. 361(1), 18 (2016)

    ADS  MathSciNet  Google Scholar 

  40. J.M.M. Senovilla, Phys. Rev. D. 88, 064015 (2013)

    ADS  Google Scholar 

  41. Z. Yousaf, M.Z. Bhatti, U. Farwa, Eur. Phys. J. C 77, 359 (2017)

    ADS  Google Scholar 

  42. L. Bel, Ann. Inst. Henri Poincaré. 17, 37 (1961)

    MathSciNet  Google Scholar 

  43. L. Herrera, A. Di Prisco, J. Martin, J. Ospino, N.O. Santos, O. Troconis, Phys. Rev. D 69(8), 084026 (2004)

    ADS  Google Scholar 

  44. A.G.-P. Gómez-Lobo, Class. Quantum Gravity. 25(1), 015006 (2007)

    Google Scholar 

  45. L. Herrera, Int. J. Mod. Phys. D. 20, 2773 (2011)

    ADS  Google Scholar 

  46. L. Herrera, A. Di Prisco, J. Ospino, Gen. Relativ. Gravit. 44(10), 2645–2667 (2012)

    ADS  Google Scholar 

  47. Z. Yousaf, K. Bamba, M.Z. Bhatti, Phys. Rev. D 95, 024024 (2017)

    ADS  MathSciNet  Google Scholar 

  48. M.Z. Bhatti, Z. Yousaf, Int. J. Mod. Phys. D. 26(04), 1750029 (2017)

    ADS  Google Scholar 

  49. M.Z. Bhatti, Z. Yousaf, M. Ilyas, Eur. Phys. J. C 77(10), 690 (2017)

    ADS  Google Scholar 

  50. M.K. Gokhroo, A. Mehra, Gen. Relativ. Gravit. 26, 75 (1994)

    ADS  Google Scholar 

  51. A. Schuster, Rep. Br. Ass. Advmt. Sci. 53, 427 (1883)

    Google Scholar 

  52. A. Schuster, W.D.W. Abney, Proc. R Soc. Lond. 35(224), 151 (1883)

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Research Project for Universities (NRPU), Higher Education Commission, Islamabad, under the research project No. 8754/Punjab/ NRPU/R&D/HEC/ 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Yousaf.

Appendices

Appendix A

The effective physical and charge components appearing in Eqs. (13)–(15) are

$$\begin{aligned} \mu ^\mathrm{(eff)}= & {} \mu \left[ 1+2f_{T}+f_{Q}\left( \frac{1}{2}R-\frac{3\nu '^2}{8e^{\lambda }}-\frac{3\nu '}{2re^{\lambda }}+\frac{5\lambda '\nu '}{8e^{\lambda }} -\frac{3\nu ''}{4e^{\lambda }}\right) \right. \nonumber \\&+\left. f'_{Q}\left( \frac{1}{re^{\lambda }}-\frac{\lambda '}{4e^{\lambda }}\right) +\frac{f''_{Q}}{2e^{\lambda }}\right] +\mu '\left[ f_{Q}\left( \frac{1}{re^{\lambda }}-\frac{\lambda '}{4e^{\lambda }}\right) +\frac{f'_{Q}}{e^{\lambda }}\right] +\frac{\mu ''f_{Q}}{2e^{\lambda }}\nonumber \\&+P_{r}\left[ f_{Q}\left( \frac{\nu '^2}{8e^{\lambda }}-\frac{1}{r^2e^{\lambda }}-\frac{\lambda '\nu '}{8e^{\lambda }}+\frac{\lambda '}{2re^{\lambda }} +\frac{\nu ''}{4e^{\lambda }}\right) +f'_{Q}\left( \frac{\lambda '}{4e^{\lambda }}-\frac{2}{re^{\lambda }}\right) \right. \nonumber \\&-\left. \frac{f''_{Q}}{2e^{\lambda }}\right] +P'_{r}\left[ f_{Q}\left( \frac{\lambda '}{4e^{\lambda }}-\frac{2}{re^{\lambda }}\right) -\frac{f'_{Q}}{e^{\lambda }}\right] -\frac{P''_{r}f_{Q}}{2e^{\lambda }}\nonumber \\&+P_{\bot }\left[ f_{Q}\left( \frac{\nu '}{2re^{\lambda }}+\frac{1}{r^2e^{\lambda }}-\frac{\lambda '}{2re^{\lambda }}\right) +\frac{f'_{Q}}{re^{\lambda }}\right] +\frac{P'_{\bot }f_{Q}}{re^{\lambda }}+\frac{R}{2}\left( \frac{f}{R}-f_{R}\right) \nonumber \\&+f'_{R}\left( \frac{2}{re^{\lambda }}-\frac{\lambda '}{2e^{\lambda }}\right) +\frac{f''_{R}}{e^{\lambda }}, \end{aligned}$$
(82)
$$\begin{aligned} P_{r}^\mathrm{(eff)}= & {} \mu \left[ -f_{T}+f_{Q}\left( \frac{\nu '^2}{8e^{\lambda }}+\frac{\nu '}{2re^{\lambda }}-\frac{\lambda '\nu '}{8e^{\lambda }}+\frac{\nu ''}{4e^{\lambda }}\right) -\frac{f'_{Q}\nu '}{4e^{\lambda }}\right] -\frac{\mu '\nu 'f_{Q}}{4}\nonumber \\&+P_{r}\left[ 1+f_{T}+f_{Q}\left( \frac{1}{2}R-\frac{3\nu '^2}{8e^{\lambda }}+\frac{\nu '}{re^{\lambda }}+\frac{1}{r^2e^{\lambda }}+\frac{3\lambda '\nu '}{8e^{\lambda }} +\frac{3\lambda '}{2re^{\lambda }}\right. \right. \nonumber \\&-\left. \frac{3\nu ''}{4e^{\lambda }}\right) +f'_{Q}\left( \frac{1}{re^{\lambda }}-\frac{\nu '}{4e^{\lambda }}+\left. \frac{\nu '}{2e^{\lambda }}\right) \right] +P'_{r}\left[ f_{Q}\left( \frac{1}{re^{\lambda }} +\frac{\nu '}{4e^{\lambda }}\right) \right] \nonumber \\&+P_{\bot }\left[ f_{Q}\left( -\frac{\nu '}{2re^{\lambda }}-\frac{1}{r^2e^{\lambda }}+\frac{\lambda '}{2re^{\lambda }}\right) +\frac{f'_{Q}}{re^{\lambda }}\right] +\frac{P'_{\bot }f_{Q}}{r} \nonumber \\&-\frac{R}{2}\left( \frac{f}{R}-f_{R}\right) -f'_{R}\left( \frac{\nu '}{2e^{\lambda }}+\frac{2}{re^{\lambda }}\right) , \end{aligned}$$
(83)
$$\begin{aligned} P_{\bot }^\mathrm{(eff)}= & {} \mu \left[ -f_{T}+f_{Q}\left( \frac{\nu '^2}{8e^{\lambda }}+\frac{\nu '}{2re^{\lambda }}-\frac{\lambda '\nu '}{8e^{\lambda }}+\frac{\nu ''}{4e^{\lambda }}\right) +\frac{f'_{Q}\nu '}{4e^{\lambda }}\right] +\frac{\mu '\nu 'f_{Q}}{4e^{\lambda }}\nonumber \\&+P_{r}\left[ f_{Q}\left( \frac{\nu '^2}{8e^{\lambda }}+\frac{\nu '}{2re^{\lambda }}-\frac{\lambda '\nu '}{8e^{\lambda }}+\frac{\nu ''}{4e^{\lambda }}\right) +f'_{Q}\left( \frac{\nu '}{2e^{\lambda }}+\frac{1}{re^{\lambda }}-\frac{\lambda '}{4e^{\lambda }}\right) \right. \nonumber \\&+\left. \frac{f''_{Q}}{2e^{\lambda }}\right] +P'_{r}\left[ f_{Q}\left( \frac{\nu '}{2e^{\lambda }}+\frac{1}{re^{\lambda }}-\frac{\lambda '}{4e^{\lambda }}\right) +\frac{f'_{Q}}{e^{\lambda }}\right] +\frac{P''_{r}f_{Q}}{2e^{\lambda }}\nonumber \\&+P_{\bot }\left[ 1+f_{T}+f_{Q}\left( \frac{1}{2}R-\frac{2}{r^2e^{\lambda }}+\frac{\lambda '}{re^{\lambda }}-\frac{\nu '}{re^{\lambda }}+\frac{2}{r^2}\right) \right. \nonumber \\&+\left. f'_{Q}\left( \frac{\nu '}{4e^{\lambda }}-\frac{\lambda '}{4e^{\lambda }} \right) +\frac{f''_{Q}}{2e^{\lambda }}\right] +P'_{\bot }\left[ f_{Q}\left( \frac{\nu '}{4e^{\lambda }}-\frac{\lambda '}{4e^{\lambda }}+\frac{2}{re^{\lambda }}\right) +\frac{f'_{Q}}{e^{\lambda }}\right] \nonumber \\&+\frac{P''_{\bot }f_{Q}}{2e^{\lambda }}-\frac{R}{2}\left( \frac{f}{R}-f_{R}\right) +f'_{R}\left( \frac{\lambda '}{2e^{\lambda }}-\frac{1}{re^{\lambda }}-\frac{\nu '}{2e^{\lambda }}\right) -\frac{f''_{R}}{e^{\lambda }}, \end{aligned}$$
(84)
$$\begin{aligned} Q_{0}^\mathrm{(eff)}= & {} (f_{T}+\frac{1}{2}Rf_{Q}+1)\frac{q^2}{8\pi r^4}-\frac{q^2f_{T}}{2r^4}+f_{Q}\left( \frac{qq''}{4\pi r^4e^\lambda } -\frac{\lambda 'qq'}{8\pi r^4e^\lambda }-\frac{qq'}{\pi r^5e^\lambda }\right. \nonumber \\&+\left. \frac{q'^2}{4\pi r^4e^\lambda }+\frac{3q^2}{4\pi r^6e^\lambda }+\frac{\lambda 'q^2}{8\pi r^5e^\lambda }-\frac{\nu 'q^2}{8\pi r^5e^\lambda } +\frac{\lambda '\nu 'q^2}{16\pi r^4e^\lambda }-\frac{\nu '^2q^2}{16\pi r^4e^\lambda }\right. \nonumber \\&-\left. \frac{\nu ''q^2}{8\pi r^4e^\lambda }\right) +f'_{Q}\left( \frac{qq'}{2\pi r^4e^\lambda }-\frac{\lambda 'q^2}{16\pi r^4e^\lambda }-\frac{q^2}{2\pi r^5e^\lambda }-\frac{\nu 'q^2}{16\pi r^4e^\lambda }\right) \nonumber \\&+\frac{f''_{Q}q^2}{8\pi r^4e^\lambda }, \end{aligned}$$
(85)
$$\begin{aligned} Q_{1}^\mathrm{(eff)}= & {} -(f_{T}+\frac{1}{2}Rf_{Q}+1)\frac{q^2}{8\pi r^4}+\frac{q^2f_{T}}{2r^4}+f_{Q}\left( \frac{\nu 'q^2}{\pi r^5e^\lambda } -\frac{\nu 'qq'}{8\pi r^4e^\lambda }\right. \nonumber \\&-\left. \frac{\lambda 'q^2}{8\pi r^5e^\lambda }-\frac{q^2}{8\pi r^6e^\lambda }-\frac{\lambda 'qq'}{8\pi r^4e^\lambda }-\frac{\lambda '\nu 'q^2}{16\pi r^4e^\lambda }+\frac{\nu '^2q^2}{16\pi r^4e^\lambda } +\frac{\nu ''q^2}{8\pi r^4e^\lambda }\right) \nonumber \\&-\frac{f'_{Q}\nu 'q^2}{16\pi r^4e^\lambda },\end{aligned}$$
(86)
$$\begin{aligned} Q_{2}^\mathrm{(eff)}= & {} (f_{T}+\frac{1}{2}Rf_{Q}+1)\frac{q^2}{8\pi r^4}+\frac{q^2f_{T}}{2r^4}+f_{Q}\left( -\frac{qq'}{4\pi r^5e^\lambda } +\frac{\lambda 'q^2}{8\pi r^5e^\lambda }\right. \nonumber \\&-\frac{\nu 'q^2}{8\pi r^5e^\lambda }+\frac{q^2}{4\pi r^6}+\left. \frac{q^2}{4\pi r^6e^\lambda }\right) -\frac{f'_{Q}q^2}{8\pi r^5e^\lambda }. \end{aligned}$$
(87)

The quantity Z arising in Eq. (17) is

$$\begin{aligned} Z =&\frac{2}{\left( 2+Rf_{Q}+2f_{T}\right) }\left[ f'_{Q}e^{-\lambda }\left( \frac{P_{r}^\mathrm{(eff)}+Q_{1}^\mathrm{(eff)}}{H}\right) \left( \frac{\nu '}{r}-\frac{e^\lambda }{r^2}+\frac{1}{r^2}\right) \right. \nonumber \\&+f_{Q}e^{-\lambda }\left( \frac{P_{r}^\mathrm{(eff)}+Q_{1}^\mathrm{(eff)}}{H}\right) \left( \frac{\nu ''}{r}-\frac{\lambda '}{r^2}-\frac{\nu '\lambda '}{r}-\frac{\nu '}{r^2}+\frac{2e^\lambda }{r^3}-\frac{2}{r^3}\right) \nonumber \\&+\frac{f_{Q}e^{-\lambda }}{2}\left( \frac{P_{r}^\mathrm{(eff)}+Q_{1}^\mathrm{(eff)}}{H}\right) '\left( \frac{\nu '\lambda '}{4} -\frac{\nu '^2}{4}-\frac{\nu ''}{4}+\frac{\lambda '}{r}-\frac{f_{T}}{2}\right) \nonumber \\&-f_{T}\left( \mu '-\frac{qq'}{r^4}+\frac{2q^2}{r^5}\right) -f'_{T}\left( \mu -\frac{q^2}{2r^4}\right) -\left( \frac{\mu ^\mathrm{(eff)}+Q_{0}^\mathrm{(eff)}}{H}\right) '\nonumber \\&\times \left\{ \frac{f_{Q}e^{-\lambda }}{8}\left( -\nu '\lambda '+\nu '^2+2\nu ''+\frac{4\nu '}{r}\right) +\frac{f_{T}}{2}\right\} -\left( \frac{P_{\bot }^\mathrm{(eff)}+Q_{2}^\mathrm{(eff)}}{H}\right) '\nonumber \\&\times \left\{ \frac{f_{Q}e^{-\lambda }}{r}\left( \frac{\lambda '}{2}-\frac{\nu '}{2}\frac{e^\lambda }{r}\right. \right. -\left. \left. \frac{1}{r}\right) -f_{T}\right\} +\left( \frac{1}{r^2}-\frac{e^{-\lambda }}{r^2}-\frac{\nu 'e^{-\lambda }}{r}\right) \nonumber \\&\times \left\{ f_{Q}\left( \mu '-\frac{q^2}{2r^4}\right) +f'_{Q}\left( \mu -\frac{qq'}{r^4} +\frac{2q^2}{r^5} \right) \right\} \nonumber \\&+\left. \left( \frac{P_{r}^\mathrm{(eff)}+Q_{1}^\mathrm{(eff)}}{H}\right) f'_{T}\right] . \end{aligned}$$
(88)

The terms \(D_{0}\) and \(D_{1}\) in Eqs. (25) and (26) are given as

$$\begin{aligned} D_{0}&=\mu \left[ -{\tilde{f}}_{T}+{\tilde{f}}_{Q}\left( \frac{\nu '^2}{8e^{\lambda }}+\frac{\nu '}{2re^{\lambda }} -\frac{\lambda '\nu '}{8e^{\lambda }}+\frac{\nu ''}{4e^{\lambda }}\right) \right] -\frac{\mu '\nu '{\tilde{f}}_{Q}}{4}+P_{r}\left[ {\tilde{f}}_{T}\right. \nonumber \\&\quad +\left. {\tilde{f}}_{Q}\left( \frac{1}{2}R- \frac{3\nu '^2}{8e^{\lambda }}+\frac{\nu '}{re^{\lambda }}+\frac{1}{r^2e^{\lambda }}+\frac{3\lambda '\nu '}{8e^{\lambda }} +\frac{3\lambda '}{2re^{\lambda }}-\frac{3\nu ''}{4e^{\lambda }}\right) \right] \nonumber \\&\quad +P'_{r}\left[ {\tilde{f}}_{Q}\left( \frac{1}{re^{\lambda }} +\frac{\nu '}{4e^{\lambda }}\right) \right] + P_{\bot }\left[ {\tilde{f}}_{Q}\left( -\frac{\nu '}{2re^{\lambda }}-\frac{1}{r^2e^{\lambda }} +\frac{\lambda '}{2re^{\lambda }}\right) \right] \nonumber \\&\quad +\frac{P'_{\bot }{\tilde{f}}_{Q}}{r}-\frac{R}{2}\left( \frac{f}{R}-{\tilde{f}}_{R}\right) , \end{aligned}$$
(89)
$$\begin{aligned} D_{1}=&-({\tilde{f}}_{T}+\frac{1}{2}R{\tilde{f}}_{Q})\frac{q^2}{8\pi r^4}+\frac{q^2{\tilde{f}}_{T}}{2r^4}+{\tilde{f}}_{Q}\left( \frac{\nu 'q^2}{\pi r^5e^\lambda } -\frac{\nu 'qq'}{8\pi r^4e^\lambda }-\frac{\lambda 'q^2}{8\pi r^5e^\lambda }\right. \nonumber \\&\quad -\left. \frac{q^2}{8\pi r^6e^\lambda }-\frac{\lambda 'qq'}{8\pi r^4e^\lambda }-\frac{\lambda '\nu 'q^2}{16\pi r^4e^\lambda }+\frac{\nu '^2q^2}{16\pi r^4e^\lambda }+\frac{\nu ''q^2}{8\pi r^4e^\lambda }\right) . \end{aligned}$$
(90)

Appendix B

The modified correction terms appeared in structure scalars (54), (56) and (57) are

$$\begin{aligned} \chi _{1}^{(D)}= & {} \frac{4\pi }{H}\left[ \left\{ h^{\epsilon }_{\rho }\Box (f_{Q}X^{\rho }_{\epsilon })-2h^{\epsilon }_{\rho }\nabla ^{\rho }\nabla _{\epsilon }f_{R} -h^{\epsilon }_{\rho }\nabla _{\mu }\nabla ^{\rho }(f_{Q}X^{\mu }_{\epsilon }) \right. \right. \nonumber \\&-\left. h^{\epsilon }_{\rho }\nabla _{\mu }\nabla _{\epsilon }(f_{Q}X^{\mu \rho })\right\} -2f_{Q}\left( R^{\rho }_{\mu }h^{\mu }_{\rho }+R_{\mu \epsilon }h^{\epsilon \mu }\right) \left\{ \left( P+\frac{q^2}{24\pi r^4}\right) \right. \nonumber \\&-\left. \left. \frac{1}{3}\left( \Pi -\frac{q^2}{4\pi r^4}\right) \right\} \right] +\frac{8\pi }{H}\left[ \left\{ \frac{R}{2}\left( \frac{f}{R}-f_{R}\right) +\left( \mu -\frac{q^2}{2r^4}\right) f_{T}\right. \right. \nonumber \\&-\left. \frac{1}{2}\nabla _{\mu }\nabla _{\nu }(f_{Q}X^{\mu \nu })\right\} -\frac{1}{2}\Box \{f_{Q}(\mu -3P)\}+2Rf_{Q}\left\{ \left( P+\frac{q^2}{24\pi r^4}\right) \right. \nonumber \\&-\left. \frac{1}{3}\left( \Pi -\frac{q^2}{4\pi r^4}\right) \right\} +\nabla _{\mu }\nabla _{\rho }(f_{Q}X^{\mu \rho })+2g^{\rho \epsilon }(f_{Q}R^{\mu \nu }+f_{T}g^{\mu \nu })\nonumber \\&\times \left. \frac{\partial ^2L_{m}}{\partial g^{\rho \epsilon }\partial g^{\mu \nu }}\right] , \end{aligned}$$
(91)
$$\begin{aligned} \chi _{2}^{(D)}= & {} -\frac{8\pi }{H}\left\{ \frac{R}{2}\left( \frac{f}{R}-f_{R}\right) +\left( \mu -\frac{q^2}{2r^4}\right) f_{T}-\frac{1}{2}\nabla _{\mu }\nabla _{\nu }(f_{Q}X^{\mu \nu })\right\} \nonumber \\&+\frac{4\pi }{H}\left[ -\frac{1}{2}\left\{ \Box (f_{Q}X)-u^{\alpha }u^{\delta }\Box (f_{Q}X_{\alpha \delta })-u^{\beta }u_{\gamma }\Box (f_{Q}X^{\gamma }_{\beta }) \right. \right. \nonumber \\&+\left. 4u_{\gamma }u^{\delta }\Box (f_{Q}X^{\gamma }_{\delta })\right\} +\left( \Box f_{R}-u^{\alpha }u^{\delta }\nabla _{\alpha }\nabla _{\delta }f_{R}-u^{\beta }u_{\gamma }\nabla ^{\gamma }\nabla _{\beta }f_{R} \right. \nonumber \\&+\left. 4u_{\gamma }u^{\delta }\nabla ^{\gamma }\nabla _{\delta }f_{R}\right) +2f_{Q}R^{\beta }_{\mu }\left\{ \left( P+\frac{q^2}{24\pi r^4}\right) h^{\mu }_{\beta }-\left( \Pi -\frac{q^2}{4\pi r^4}\right) \right. \nonumber \\&\times \left. \left( s^{\mu }s_{\beta } +\frac{1}{3}h^{\mu }_{\beta }\right) \right\} -3f_{Q}\left( R^{\gamma }_{\mu }u^{\mu }u_{\gamma }+R_{\mu \delta } u^{\mu }u^{\delta }\right) \left( \mu +\frac{q^2}{8\pi r^4}\right) \nonumber \\&+\frac{1}{2}\{\nabla _{\mu }\nabla _{\alpha }(f_{Q}X^{\mu \alpha })+\nabla _{\mu }\nabla _{\beta }(f_{Q}X^{\mu \beta }) +4u_{\gamma }u^{\delta }\nabla _{\mu }\nabla ^{\gamma }(f_{Q}X^{\mu }_{\delta })\nonumber \\&+4u_{\gamma }u^{\delta }\nabla _{\mu }\nabla _{\delta }(f_{Q}X^{\mu \gamma }) -u^{\alpha }u^{\delta }\nabla _{\mu }\nabla _{\alpha }(f_{Q}X^{\mu }_{\delta }) -u_{\gamma }u^{\beta }\nabla _{\mu }\nabla _{\beta }(f_{Q}X^{\gamma \mu })\nonumber \\&-u_{\gamma }u^{\beta }\nabla _{\mu }\nabla ^{\gamma }(f_{Q}X^{\mu }_{\beta }) -u^{\alpha }u^{\delta }\nabla _{\mu }\nabla _{\delta }(f_{Q}X^{\mu }_{\alpha })\}+2h^{\epsilon \beta }(f_{Q}R^{\mu \nu }+f_{T}g^{\mu \nu })\nonumber \\&\times \left. \frac{\partial ^2L_{m}}{\partial g^{\epsilon \beta }\partial g^{\mu \nu }}\right] +\frac{8\pi }{H}\left[ \frac{1}{2}\Box \{f_{Q}(\mu -3P)\}+2f_{Q}R_{\mu \epsilon }X^{\mu \epsilon } -\nabla _{\mu }\nabla _{\epsilon }(f_{Q}X^{\mu \epsilon })\right. \nonumber \\&-\left. 2g^{\epsilon \xi }(f_{Q}R^{\mu \nu }+f_{T}g^{\mu \nu })\frac{\partial ^2L_{m}}{\partial g^{\epsilon \xi }\partial g^{\mu \nu }}\right] , \end{aligned}$$
(92)
$$\begin{aligned} \chi _{\alpha \beta }^{(D)}= & {} -\frac{2\pi }{H}\left[ h^{\lambda }_{\alpha }h^{\pi }_{\beta }\Box (f_{Q}X_{\lambda \pi })-\Box (f_{Q}X_{\alpha \beta }) -u_{\alpha }u_{\beta }u_{\gamma }u^{\delta }\Box (f_{Q}X^{\gamma }_{\delta })\right] \nonumber \\&+\frac{4\pi }{H}\left[ (h^{\lambda }_{\alpha }h^{\pi }_{\beta }\nabla _{\pi }\nabla _{\lambda }f_{R}-\nabla _{\alpha }\nabla _{\beta }f_{R}-u_{\alpha }u_{\beta }u_{\gamma }u^{\delta }\nabla ^{\gamma }\nabla _{\delta }f_{R}) \right. \nonumber \\&+f_{Q}(R_{\lambda \mu }h^{\lambda }_{\alpha }-R_{\alpha \mu })\left\{ \left( P+\frac{q^2}{24\pi r^4}\right) h^{\mu }_{\beta }-\left( \Pi -\frac{q^2}{4\pi r^4}\right) \right. \nonumber \\&\times \left. \left( s^{\mu }s_{\beta }+\frac{1}{3}h^{\mu }_{\beta }\right) \right\} +f_{Q}(R_{\mu \pi }h^{\pi }_{\beta }-R_{\mu \beta })\left\{ \left( P+\frac{q^2}{24\pi r^4}\right) h^{\mu }_{\alpha }\right. \nonumber \\&-\left. \left( \Pi -\frac{q^2}{4\pi r^4}\right) \left( s^{\mu }s_{\alpha }+\frac{1}{3}h^{\mu }_{\alpha }\right) \right\} +\frac{1}{2}\{h^{\lambda }_{\alpha }h^{\pi }_{\beta }\nabla _{\mu }\nabla _{\lambda } (f_{Q}X^{\mu }_{\pi })\nonumber \\&+h^{\lambda }_{\alpha }h^{\pi }_{\beta }\nabla _{\mu }\nabla _{\pi }(f_{Q}X^{\mu }_{\lambda }) -\nabla _{\mu }\nabla _{\alpha }(f_{Q}X^{\mu }_{\beta }) -\nabla _{\mu }\nabla _{\beta }(f_{Q}X^{\mu }_{\alpha })\nonumber \\&-u_{\alpha }u_{\beta }u_{\gamma }u^{\delta }\nabla _{\mu }\nabla ^{\gamma }(f_{Q}X^{\mu }_{\delta }) -u_{\alpha }u_{\beta }u_{\gamma }u^{\delta }\nabla _{\mu }\nabla _{\delta }(f_{Q}X^{\mu \gamma })\}\nonumber \\&+\left. 2(f_{Q}R^{\mu \nu }+f_{T}R^{\mu \nu })h^{\epsilon }_{\alpha }\left\{ h^{\pi }_{\beta }\frac{\partial ^2L_{m}}{\partial g^{\epsilon \pi }\partial g^{\mu \nu }} -\frac{\partial ^2L_{m}}{\partial g^{\epsilon \beta }\partial g^{\mu \nu }}\right\} \right] . \end{aligned}$$
(93)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousaf, Z., Bhatti, M.Z. & Naseer, T. Study of static charged spherical structure in f(RTQ) gravity. Eur. Phys. J. Plus 135, 323 (2020). https://doi.org/10.1140/epjp/s13360-020-00332-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00332-9

Navigation