Skip to main content
Log in

A study on inflation with a single-field potential in slow-roll approximation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We propose a new potential for inflation with a single-field component. We evaluate the evolution of the slow-roll parameters in our model and find that they are small at the beginning of inflation. We thus apply the slow-roll approximation to calculate the scalar spectral tilt \(n_s\) and the tensor-to-scalar ratio r. We also calculate the non-Gaussianity \(f_{NL}\) in the model using the package BINGO. The analysis of the model is compared with the latest Planck data on \(n_s\), r and \(f_{NL}\). A good agreement with those data is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.A. Starobinsky, Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  2. A.H. Guth, Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  3. A. Albrecht, P.J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982)

    Article  ADS  Google Scholar 

  4. A.D. Linde, Phys. Lett. B 108, 389 (1982)

    Article  ADS  Google Scholar 

  5. A.D. Linde, Particle Physics and Infationary Cosmology (Harwood, Chur, 1990)

    Book  Google Scholar 

  6. A.R. Liddle, D.H. Lyth, Cosmological Infation and Large-Scale Structure (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  7. D.H. Lyth, A.R. Liddle, THE Priordial Density Perturbation (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  8. A. Mazumdar, J. Rocher, Phys. Rept. 497, 85 (2011). arXiv:1001.0993 [hep-ph]

  9. P. A. R. Ade et al. [Planck Collaboration], arXiv:1303.5082 [astro-ph.CO]

  10. P.A.R. Ade et al., [Planck Collaboration], Astron. Astrophys. 594, A20 (2016). arXiv:1502.02114 [astro-ph.CO]

  11. Y. Akrami et al. [Planck Collaboration], arXiv:1807.06211 [astro-ph.CO]

  12. C.L. Bennett et al. [WMAP Collaboration], Astrophys. J. Suppl. 208, 20 (2013). arXiv:1212.5225 [astro-ph.CO]

  13. G. Hinshaw et al. [WMAP Collaboration], Astrophys. J. Suppl. 208, 19 (2013) https://doi.org/10.1088/0067-0049/208/2/19, arXiv:1212.5226 [astro-ph.CO]

    Article  ADS  Google Scholar 

  14. E. Wong, B.C. Robertson, K.V.K. Iyengar, D.M. Sheppard, W.C. Olsen, Nucl. Phys. A 192, 279 (1972)

    Article  ADS  Google Scholar 

  15. A.A. Starobinsky, Sov. Astron. Lett. 9, 302 (1983)

    ADS  Google Scholar 

  16. L. Wang, E. Pukartas, A. Mazumdar, JCAP 1307, 019 (2013). arXiv:1303.5351 [hep-ph]

  17. S. Choudhury, A. Mazumdar, Nucl. Phys. B 882, 386 (2014). arXiv:1306.4496 [hep-ph]

  18. V. Vennin, K. Koyama, D. Wands, JCAP 1511, 008 (2015). arXiv:1507.07575 [astro-ph.CO]

  19. R. Kallosh, A. Linde, D. Roest, Phys. Rev. Lett. 112(1), 011303 (2014). arXiv:1310.3950 [hep-th]

  20. T. Tenkanen, JCAP 1712(12), 001 (2017). arXiv:1710.02758 [astro-ph.CO]

  21. Z. Lu, JCAP 1311, 038 (2013). arXiv:1311.0348 [hep-th]

  22. R. Kallosh, A. Linde, JCAP 1306, 028 (2013). arXiv:1306.3214 [hep-th]

  23. A.D. Linde, Chaotic Inflation. Phys. Lett. B 129, 177 (1983)

    Article  ADS  Google Scholar 

  24. R. Kallosh, A. Linde, JCAP 1306, 027 (2013). arXiv:1306.3211 [hep-th]

  25. A. Ashoorioon, K. Dimopoulos, M.M. Sheikh-Jabbari, G. Shiu. arXiv:1306.4914 [hep-th]

  26. D.K. Hazra, L. Sriramkumar, J. Martin, JCAP 1305, 026 (2013). arXiv:1201.0926 [astro-ph.CO]

  27. V. Sreenath, D.K. Hazra, L. Sriramkumar, JCAP 1502(02), 029 (2015). arXiv:1410.0252 [astro-ph.CO]

  28. V.F. Mukhanov, Sov. Phys. JETP 67, 1297 (1988)

    Google Scholar 

  29. M. Sasaki, Prog. Theor. Phys. 76, 1036 (1986)

    Article  ADS  Google Scholar 

  30. A.R. Liddle, D.H. Lyth, Phys. Lett. B 291, 391 (1992)

    Article  ADS  Google Scholar 

  31. A.R. Liddle, D.H. Lyth, Phys. Rept. 231, 1 (1993)

    Article  ADS  Google Scholar 

  32. D.K. Hazra, A. Shafieloo, G.F. Smoot, A.A. Starobinsky, JCAP 1408, 048 (2014). arXiv:1405.2012 [astro-ph.CO]

  33. J.M. Maldacena, JHEP 0305, 013 (2003). arXiv:astro-ph/0210603

  34. P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. 571, A24 (2014) https://doi.org/10.1051/0004-6361/201321554, arXiv:1303.5084 [astro-ph.CO]

  35. Y. Akrami et al. [Planck Collaboration], arXiv:1905.05697 [astro-ph.CO]

  36. D.K. Hazra, A. Shafieloo, G.F. Smoot, A.A. Starobinsky, Phys. Rev. Lett. 113(7), 071301 (2014)

    Article  ADS  Google Scholar 

  37. V. Acquaviva, N. Bartolo, S. Matarrese, A. Riotto, Nucl. Phys. B 667, 119 (2003). arXiv:astro-ph/0209156

  38. D. Baumann. arXiv:0907.5424 [hep-th]

  39. R.W. Brankin, I. Gladwell, L.F. Shampine, RKSUITE: A suite of Runge–Kutta codes for the initial value problem for ODEs, Softreport 92–S1 (Department of Mathematics, Southern Methodist University, Dallas Texas, 1992)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (NSFC) with Grant No. 11575043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhun Lu.

Appendix

Appendix

Here, we provide the algorithm of BINGO which is used to calculate the power spectra and the non-Gaussianity. We also present our specified code used in the calculation within our model potential.

As described in detail in Ref. [26], BINGO solves the background as well as the perturbation equations using RKSUITE [39], which is a publicly available routine employing Runge–Kutta method to solve ordinary differential equations with initial value condition. The number of e-folds is treated as the independent variable, which allows for an efficient and accurate computation. To obtain the power spectrum \(P_s\), the standard Bunch–Davies initial conditions on the perturbations are imposed when the modes are well inside the Hubble radius, and the modes are evolved until suitably late times. Having obtained the behavior of the background and the modes, BINGO carries out the integrals involved in arriving at the bispectrum using the method of adaptive quadrature. In the equilateral limit of the bispectrum which is our case, each of the modes of interest can be evolved independently and the integrals for the modes can be calculated separately. The integrals contain a cutoff in the sub-Hubble limit, which is essential for singling out the perturbative vacuum.

The computation code of our model which we implement into BINGO is as follows.

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Yuan, J. A study on inflation with a single-field potential in slow-roll approximation. Eur. Phys. J. Plus 135, 293 (2020). https://doi.org/10.1140/epjp/s13360-020-00301-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00301-2

Navigation