Skip to main content
Log in

Thermodynamics of scalar-tensor-Maxwell black holes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The action of the charged Einstein-dilaton gravity theory is obtained from that of the scalar-tensor gravity theory by use of the transformations defined as \( g_{\mu\nu}\rightarrow \Omega^{2}g_{\mu\nu}\) and \( A_{\mu}\rightarrow A_{\mu}\). It is shown that, under these conformal transformations, the Lagrangian of Maxwell’s electrodynamics remains invariant in four-dimensional space-times. The related field equations are solved in the framework of Einstein-dilaton theory, and the dilatonic potential is obtained as a linear combination of three Liouville-type potentials. Two classes of novel charged black holes are identified as the exact solution to the field equations of the Einstein-Maxwell-dilaton theory. We calculate the conserved and thermodynamic quantities of dilaton black holes and show that the first law of black hole thermodynamics is valid in its standard form. Also, the thermodynamic stability or the phase transition of dilaton black holes is analyzed by use of the canonical ensemble method. Then, making use of the inverse conformal transformations, two classes of charged scalar-tensor black holes are obtained from their Einstein-dilaton counterparts and their thermodynamic properties as well as thermodynamic phase transitions are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.N. Spergel et al., Astrophys. J. Suppl. 170, 377 (2007)

    ADS  Google Scholar 

  2. A.G. Riess et al., Astrophys. J. 607, 665 (2004)

    ADS  Google Scholar 

  3. U. Seljak et al., Phys. Rev. D 71, 103515 (2005)

    ADS  Google Scholar 

  4. D.J. Eisenstein et al., Astrophys. J. 633, 560 (2005)

    ADS  Google Scholar 

  5. K. Bamba, S.D. Odintsov, JCAP 04, 024 (2008)

    ADS  Google Scholar 

  6. L. Amarilla, H. Vucetich, Int. J. Mod. Phys. A 25, 3835 (2010)

    ADS  Google Scholar 

  7. M. Dehghani, J. High Energy Phys. 03, 203 (2016)

    ADS  Google Scholar 

  8. S. Capozziello, V.F. Cardone, A. Troisi, JCAP 08, 001 (2006)

    ADS  Google Scholar 

  9. S. Nojiri, S.D. Odintsov, Phys. Rev. D 74, 086005 (2006)

    ADS  Google Scholar 

  10. C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)

    ADS  MathSciNet  Google Scholar 

  11. M.R. Setare, V. Kamali, Phys. Rev. D 87, 083524 (2013)

    ADS  Google Scholar 

  12. H. Motohashi, A.A. Starobinsky, J. Yokoyama, JCAP 09, 018 (2015)

    ADS  Google Scholar 

  13. A. Mohammadi, Kh. Saaidi, T. Golanbari, Phys. Rev. D 97, 083006 (2018)

    ADS  Google Scholar 

  14. M. Dehghani, Phys. Rev. D 97, 044030 (2018)

    ADS  MathSciNet  Google Scholar 

  15. M. Dehghani, Phys. Rev. D 99, 104036 (2019)

    ADS  MathSciNet  Google Scholar 

  16. I.Z. Stefanov, S.S. Yazadjiev, M.D. Todorov, Mod. Phys. Lett. A 34, 2915 (2008)

    ADS  Google Scholar 

  17. S. Pandey, N. Banerjee, Eur. Phys. J. Plus 132, 107 (2017)

    Google Scholar 

  18. S.W. Hawking, Nature 248, 30 (1974)

    ADS  Google Scholar 

  19. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)

    ADS  Google Scholar 

  20. S.W. Hawking, Phys. Rev. D 72, 084013 (2005)

    ADS  MathSciNet  Google Scholar 

  21. J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)

    ADS  MathSciNet  Google Scholar 

  22. J.M. Bardeen, B. Carter, S.W. Hawking, Commun. Math. Phys. 31, 161 (1973)

    ADS  Google Scholar 

  23. M. Kord Zangeneh, A. Sheykhi, M.H. Dehghani, Phys. Rev. D 91, 044035 (2015)

    ADS  MathSciNet  Google Scholar 

  24. A. Sheykhi, Phys. Rev. D 86, 024013 (2012)

    ADS  Google Scholar 

  25. M. Dehghani, Phys. Rev. D 94, 104071 (2016)

    ADS  MathSciNet  Google Scholar 

  26. M. Dehghani, S.F. Hamidi, Phys. Rev. D 96, 044025 (2017)

    ADS  MathSciNet  Google Scholar 

  27. M. Kord Zangeneh, M.H. Dehghani, A. Sheykhi, Phys. Rev. D 92, 104035 (2015)

    ADS  MathSciNet  Google Scholar 

  28. H.A. Gonzalez, M. Hassaine, C. Martinez, Phys. Rev. D 80, 104008 (2009)

    ADS  Google Scholar 

  29. M. Dehghani, S.F. Hamidi, Phys. Rev. D 96, 104017 (2017)

    MathSciNet  Google Scholar 

  30. I.Z. Stefanov, S.S. Yazadjiev, M.D. Todorov, Phys. Rev. D 75, 084036 (2007)

    ADS  MathSciNet  Google Scholar 

  31. I.Z. Stefanov, S.S. Yazadjiev, M.D. Todorov, Mod. Phys. Lett. A 17, 1217 (2007)

    ADS  Google Scholar 

  32. H.A. Gonzalez, M. Hassaine, C. Martinez, Phys. Rev. D 80, 104008 (2009)

    ADS  Google Scholar 

  33. Z. Dayyani, A. Sheykhi, M.H. Dehghani, Phys. Rev. D 95, 084004 (2017)

    ADS  MathSciNet  Google Scholar 

  34. V. Faraoni, N. Lanahan-Tremblay, Phys. Rev. D 78, 064017 (2008)

    ADS  MathSciNet  Google Scholar 

  35. T.P. Sotiriou, V. Faraoni, Phys. Rev. Lett. 108, 081103 (2012)

    ADS  Google Scholar 

  36. V. Faraoni, Phys. Rev. D 95, 124013 (2017)

    ADS  MathSciNet  Google Scholar 

  37. M. Dehghani, Phys. Rev. D 98, 044008 (2018)

    ADS  Google Scholar 

  38. M. Dehghani, Int. J. Mod. Phys. D 27, 1850073 (2018)

    ADS  Google Scholar 

  39. M. Dehghani, Phys. Rev. D 99, 024001 (2019)

    ADS  MathSciNet  Google Scholar 

  40. M. Dehghani, M.R. Setare, Phys. Rev. D 100, 044022 (2019)

    ADS  Google Scholar 

  41. A. Sheykhi, N. Riazi, Phys. Rev. D 75, 024021 (2007)

    ADS  MathSciNet  Google Scholar 

  42. K.C.K. Chan, R.B. Mann, Phys. Rev. D 50, 6385 (1994)

    ADS  MathSciNet  Google Scholar 

  43. K.C.K. Chan, J.H. Horne, R.B. Mann, Nucl. Phys. B 447, 441 (1995)

    ADS  Google Scholar 

  44. M. Dehghani, Eur. Phys. J. Plus 133, 474 (2018)

    Google Scholar 

  45. A. Sheykhi, S. Hajkhalili, Phys. Rev. D 89, 104019 (2014)

    ADS  Google Scholar 

  46. A. Sheykhi, A. Kazemi, Phys. Rev. D 90, 044028 (2014)

    ADS  Google Scholar 

  47. M. Dehghani, Phys. Rev. D 96, 044014 (2017)

    ADS  MathSciNet  Google Scholar 

  48. M. Dehghani, Phys. Lett. B 773, 105 (2017)

    ADS  Google Scholar 

  49. M. Dehghani, Eur. Phys. J. Plus 134, 426 (2019)

    Google Scholar 

  50. M. Kord Zangeneh, M.H. Dehghani, A. Sheykhi, Phys. Rev. D 92, 104035 (2015)

    ADS  MathSciNet  Google Scholar 

  51. S.H. Hendi, S. Panahiyan, M. Momennia, Int. J. Mod. Phys. D 25, 1650063 (2016)

    ADS  Google Scholar 

  52. M. Dehghani, Phys. Lett. B 785, 274 (2018)

    ADS  Google Scholar 

  53. M. Dehghani, Phys. Lett. B 777, 351 (2018)

    ADS  MathSciNet  Google Scholar 

  54. J.D. Brown, J.W. York, Phys. Rev. D 47, 1407 (1993)

    ADS  MathSciNet  Google Scholar 

  55. J.D. Brown, J. Creighton, R.B. Mann, Phys. Rev. D 50, 6394 (1994)

    ADS  MathSciNet  Google Scholar 

  56. S.H. Hendi, A. Sheykhi, S. Panahiyan, B. Eslam Panah, Phys. Rev. D 92, 064028 (2015)

    ADS  MathSciNet  Google Scholar 

  57. S.H. Hendi, M. Faizal, B. Eslam Panah, S. Panahiyan, Eur. Phys. J. C 76, 296 (2016)

    ADS  Google Scholar 

  58. M. Dehghani, Phys. Lett. B 781, 553 (2018)

    ADS  Google Scholar 

  59. M. Dehghani, Phys. Lett. B 793, 234 (2019)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dehghani.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani, M. Thermodynamics of scalar-tensor-Maxwell black holes. Eur. Phys. J. Plus 134, 515 (2019). https://doi.org/10.1140/epjp/i2019-13046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-13046-8

Navigation