Skip to main content
Log in

Kerr/CFT correspondence on Kerr-Newman-NUT-Quintessence black hole

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Rotating black hole solution surrounded by quintessential matter is recently discussed because it might be the promising solution to study the effect of dark energy in small scale of the universe. This quintessential solution is originally derived from the condition of additivity and linearity for the energy-momentum tensor. We carry out the thermodynamic properties of this solution using the Kerr/CFT correspondence for several specific quintessential equation-of-state parameters. A problem arises when we compute the central charge because the canonical conserved charge is needed to be calculated from the Lagrangian. However, the exact Lagrangian of the quintessence is not defined yet in the original derivation. Yet we solve this problem by the assumption that there is only a contribution from gravitational field to the central charge. Then we could find the entropy of this black hole after calculating the temperature and using Cardy entropy formula. Another problem comes out when the spin goes to zero to find the Reissner-Nordström-NUT-Quintessence solution. To solve it, we extend to the 5-dimensional solution. In the end, we obtain the entropy for this 5-dimensional solution. So the quintessential black hole solution is dual with the CFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    ADS  Google Scholar 

  2. Arianto, F.P. Zen, B.E. Gunara, Triyanta, Supardi, J. High Energy Phys. 09, 048 (2007)

    ADS  Google Scholar 

  3. Arianto, F.P. Zen, Triyanta, B.E. Gunara, Phys. Rev. D 77, 123517 (2008)

    ADS  MathSciNet  Google Scholar 

  4. F.P. Zen, Arianto, B.E. Gunara, Triyanta, A. Purwanto, Eur. Phys. J. C 63, 477 (2009)

    ADS  Google Scholar 

  5. Arianto, F.P. Zen, B.E. Gunara, Gen. Relativ. Gravit. 42, 909 (2010)

    ADS  Google Scholar 

  6. S. Feranie, Arianto, F.P. Zen, Phys. Rev. D 81, 084058 (2010)

    ADS  Google Scholar 

  7. Arianto, F.P. Zen, S. Feranie, I.P. Widyatmika, B.E. Gunara, Phys. Rev. D 84, 044008 (2011)

    ADS  Google Scholar 

  8. A. Suroso, F.P. Zen, Gen. Relativ. Gravit. 45, 799 (2013)

    ADS  Google Scholar 

  9. A. Suroso, F.P. Zen, Adv. Stud. Theor. Phys. 9, 423 (2015)

    Google Scholar 

  10. G. Hikmawan, J. Soda, A. Suroso, F.P. Zen, Phys. Rev. D 93, 068301 (2016)

    ADS  MathSciNet  Google Scholar 

  11. V.V. Kiselev, Class. Quantum Grav. 20, 1187 (2003)

    ADS  Google Scholar 

  12. B. Toshmatov, Z. Stuchlík, B. Ahmedov, Eur. Phys. J. Plus 132, 98 (2017)

    Google Scholar 

  13. Z. Xu, J. Wang, Phys. Rev. D 95, 064015 (2017)

    ADS  MathSciNet  Google Scholar 

  14. E.T. Newman, A.I. Janis, J. Math. Phys. 6, 915 (1965)

    ADS  Google Scholar 

  15. E.T. Newman, E. Couch, K. Chinnapared, A. Exton, A. Prakash, R. Torrence, J. Math. Phys. 6, 918 (1965)

    ADS  Google Scholar 

  16. M.F.A.R. Sakti, A. Suroso, F.P. Zen, arXiv:1901.09163 [gr-qc]

  17. H. Erbin, Gen. Relativ. Gravit. 47, 19 (2015)

    ADS  MathSciNet  Google Scholar 

  18. H. Erbin, L. Heurtier, Class. Quantum Grav. 32, 165005 (2015)

    ADS  Google Scholar 

  19. H. Erbin, Gen. Relativ. Gravit. 48, 56 (2016)

    ADS  MathSciNet  Google Scholar 

  20. H. Erbin, Universe 3, 19 (2017)

    ADS  Google Scholar 

  21. R. Kumar, S.G. Ghosh, Eur. Phys. J. C 78, 750 (2018)

    ADS  Google Scholar 

  22. Z. Xu, X. Hou, X. Gong, J. Wang, Eur. Phys. J. C 78, 513 (2018)

    ADS  Google Scholar 

  23. S.G. Ghosh, M. Amir, S.D. Maharaj, Eur. Phys. J. C 77, 530 (2017)

    ADS  Google Scholar 

  24. S.G. Ghosh, S.D. Maharaj, D. Baboolal, T. Lee, Eur. Phys. J. C 78, 90 (2018)

    ADS  Google Scholar 

  25. A. Strominger, C. Vafa, Phys. Lett. B 379, 99 (1996)

    ADS  MathSciNet  Google Scholar 

  26. M. Guica, T. Hartman, W. Song, A. Strominger, Phys. Rev. D 80, 124008 (2009)

    ADS  MathSciNet  Google Scholar 

  27. T. Hartman, K. Murata, T. Nishioka, A. Strominger, J. High Energy Phys. 04, 019 (2009)

    ADS  Google Scholar 

  28. A.M. Ghezelbash, J. High Energy Phys. 08, 045 (2009)

    ADS  Google Scholar 

  29. H. Lü, J. Mei, C.N. Pope, J. High Energy Phys. 04, 054 (2009)

    ADS  Google Scholar 

  30. R. Li, J.R. Ren, J. High Energy Phys. 09, 039 (2010)

    ADS  Google Scholar 

  31. D. Anninos, T. Hartman, J. High Energy Phys. 03, 096 (2010)

    ADS  Google Scholar 

  32. A. Ghodsi, M.R. Garousi, Phys. Lett. B 687, 79 (2010)

    ADS  MathSciNet  Google Scholar 

  33. A.M. Ghezelbash, Mod. Phys. Lett. A 27, 1250046 (2012)

    ADS  MathSciNet  Google Scholar 

  34. M. Astorino, J. High Energy Phys. 10, 016 (2015)

    ADS  MathSciNet  Google Scholar 

  35. M. Astorino, Phys. Lett. B 751, 96 (2015)

    ADS  Google Scholar 

  36. H.M. Siahaan, Class. Quantum Grav. 33, 155013 (2016)

    ADS  MathSciNet  Google Scholar 

  37. M. Astorino, Phys. Lett. B 760, 393 (2016)

    ADS  Google Scholar 

  38. M. Sinamuli, R.B. Mann, J. High Energy Phys. 08, 148 (2016)

    ADS  Google Scholar 

  39. G. Compére, Living Rev. Relativ. 20, 1 (2017)

    ADS  Google Scholar 

  40. M.F.A.R. Sakti, A. Suroso, F.P. Zen, Int. J. Mod. Phys. D 27, 1850109 (2018)

    ADS  Google Scholar 

  41. M.F.A.R. Sakti, A. Suroso, F.P. Zen, J. Phys.: Conf. Ser. 1204, 012009 (2019)

    Google Scholar 

  42. M.F.A.R. Sakti, P.Y.D. Sagita, A. Suroso, F.P. Zen, arXiv:1612.00701 [hep-th]

  43. M.F.A.R. Sakti, P.Y.D. Sagita, A. Suroso, F.P. Zen, J. Phys.: Conf. Ser. 1127, 012002 (2019)

    Google Scholar 

  44. J. Podolský, H. Kadlecová, Class. Quantum Grav. 26, 105007 (2006)

    ADS  Google Scholar 

  45. S. Chen, B. Wang, R. Su, Phys. Rev. D 77, 124011 (2008)

    ADS  MathSciNet  Google Scholar 

  46. Y. Sekiwa, Phys. Rev. D 73, 084009 (2006)

    ADS  MathSciNet  Google Scholar 

  47. J.D. Brown, M. Henneaux, Commun. Math. Phys. 104, 207 (1986)

    ADS  Google Scholar 

  48. G. Barnich, F. Brandt, Nucl. Phys. B 633, 3 (2002)

    ADS  Google Scholar 

  49. G. Barnich, G. Compere, J. Math. Phys. (N.Y.) 49, 042901 (2008)

    ADS  Google Scholar 

  50. P. Di Francesco, P. Mathieu, D. Senechal, Conformal Field Theory (Springer, New York, 1997)

  51. D.A. Lowe, A. Skanata, J. Phys. A 45, 475401 (2012)

    ADS  MathSciNet  Google Scholar 

  52. A.M. Ghezelbash, H.M. Siahaan, Class. Quantum Grav. 30, 135005 (2013)

    ADS  Google Scholar 

  53. A.M. Ghezelbash, H.M. Siahaan, Gen. Relativ. Gravit. 46, 1783 (2014)

    ADS  Google Scholar 

  54. M.F.A.R. Sakti, A.M. Ghezelbash, A. Suroso, F.P. Zen, Gen. Relativ. Gravit. 51, 151 (2019) arXiv:1911.05459 [gr-qc]

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad F. A. R. Sakti.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakti, M.F.A.R., Suroso, A. & Zen, F.P. Kerr/CFT correspondence on Kerr-Newman-NUT-Quintessence black hole. Eur. Phys. J. Plus 134, 580 (2019). https://doi.org/10.1140/epjp/i2019-12937-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12937-x

Navigation