Skip to main content
Log in

Shape memory alloys phenomena: classification of the shape memory alloys production techniques and application fields

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The shape memory alloy, referred to as the material of the future, is the first to come to mind in the class of smart materials. Shape memory alloys are already present in many important areas. In the medical field, glasses frame material, the material of intravenous stents, jet engines in the aviation area, and bridges in the construction area can be mentioned. Although the shape memory effect is found in different material types such as ceramics and polymer, shape memory alloys are the most commonly used among these materials. The atomic-bond types of the alloys provide long-lasting and durable properties compared to other material types. The extraordinary mechanics of solid-state transformation and the kinematics of the bonds between atoms exhibit a unique nature formation. Discovered too late in the history of humanity, this feature changed the material understanding of the last 80 years and enabled industrial application to have a very important function coming from intelligent material types. In this study, a detailed study on the mechanical characterization of shape memory alloys in microstructure, types of shape memory effect, shape memory alloy, phase transformations and applications are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.L. Wang, Adv. Mater. 10, 13 (1998)

    Article  Google Scholar 

  2. W. Huang, Mater. Des. 23, 11 (2002)

    Article  ADS  Google Scholar 

  3. K. Otsuka, C.M. Wayman, Shape memory materials (Cambridge University Press, 1999)

  4. K. Ullakko, J. Mater. Eng. Perform. 5, 405 (1996)

    Article  Google Scholar 

  5. Z. Wei, R. Sandstroröm, S. Miyazaki, J. Mater. Sci. 33, 3743 (1998)

    Article  ADS  Google Scholar 

  6. L. Sun, W. Huang, Metal Sci. Heat Treat. 51, 573 (2009)

    Article  ADS  Google Scholar 

  7. D. Hartl, D. Lagoudas, in Shape Memory Alloys (Springer, 2008) p. 53

  8. K. Otsuka, X. Ren, Intermetallics 7, 511 (1999)

    Article  Google Scholar 

  9. D.J. Hartl, D.C. Lagoudas, Proc. Inst. Mech. Eng., Part G 221, 535 (2007)

    Article  Google Scholar 

  10. K. DeLaurentis, C. Mavroidis, C. Pfeiffer, in 7th International Conference on New Actuators (ACTUATOR 2000), Bremen, Germany, June (Messe Bremen GmbH, 2000) p. 19

  11. L. Janke et al., Mater. Struct. 38, 578 (2005)

    Google Scholar 

  12. S. Miyazaki, K. Otsuka, ISIJ Int. 29, 353 (1989)

    Article  Google Scholar 

  13. A. Ölander, J. Am. Chem. Soc. 54, 3819 (1932)

    Article  Google Scholar 

  14. M. Hassan, M. Mehrpouya, S. Dawood, in Applied Mechanics and Materials (Trans Tech Publ, 2014) p. 533

  15. M. Eskil, K. Aldaş, I. Özkul, Metall. Mater. Trans. A 46, 134 (2015)

    Article  Google Scholar 

  16. J. Cederström, J. Van Humbeeck, J. Phys. IV 5, C2 (1995)

    Google Scholar 

  17. J.M. Jani et al., Mater. Des. 56, 1078 (2014)

    Article  Google Scholar 

  18. D.A. Porter, K.E. Easterling, M. Sherif, Phase Transformations in Metals and Alloys (CRC Press, 2009)

  19. C. Wayman, MRS Bull. 18, 49 (1993)

    Article  Google Scholar 

  20. M. Fremond, S. Miyazaki, Shape Memory Alloys, 1st edition (Springer-Verlag Wien, 1996)

    Book  Google Scholar 

  21. J.G. Boyd, D.C. Lagoudas, Int. J. Plast. 12, 805 (1996)

    Article  Google Scholar 

  22. F. Falk, Acta Metall. 28, 1773 (1980)

    Article  Google Scholar 

  23. O. Adiguzel, J. Mater. Process. Technol. 185, 120 (2007)

    Article  Google Scholar 

  24. K. Otsuka et al., Acta Metall. 24, 207 (1976)

    Article  Google Scholar 

  25. L.C. Brinson, J. Intell. Mater. Syst. Struct. 4, 229 (1993)

    Article  Google Scholar 

  26. G. Eggeler et al., Mater. Sci. Eng.: A 378, 24 (2004)

    Article  Google Scholar 

  27. Y. Fu et al., Surf. Coat. Technol. 145, 107 (2001)

    Article  Google Scholar 

  28. Y. Zhao et al., Acta Mater. 53, 337 (2005)

    Article  Google Scholar 

  29. V. Khovailo et al., J. Appl. Phys. 93, 8483 (2003)

    Article  ADS  Google Scholar 

  30. H. Otsuka et al., ISIJ Int. 30, 674 (1990)

    Article  Google Scholar 

  31. Y. Sutou, R. Kainuma, K. Ishida, Mater. Sci. Eng.: A 273, 375 (1999)

    Article  Google Scholar 

  32. K. Eckelmeyer, Scr. Metall. 10, 667 (1976)

    Article  Google Scholar 

  33. J. Van Humbeeck, Mater. Sci. Eng.: A 273, 134 (1999)

    Article  Google Scholar 

  34. C. Wayman, JOM 32, 129 (1980)

    Article  Google Scholar 

  35. L. Machado, M. Savi, Braz. J. Med. Biol. Res. 36, 683 (2003)

    Article  Google Scholar 

  36. J. Cederstrom, J. Van Humbeeck, J. Phys. IV, 335 (1995)

    Google Scholar 

  37. B.B. Lichtenstein, Generative Emergence: A new discipline of organizational, entrepreneurial and social innovation (Oxford University Press, USA, 2014)

  38. A.A. Alonso, C.V. Fernandez, J.R. Banga, Int. J. Robust Nonlinear Control 14, 157 (2004)

    Article  Google Scholar 

  39. Y.A. Çengel, M.A. Boles, Thermodynamics: An Engineering Approach (McGraw-Hill, 2008)

  40. R.E. Sonntag, Fundamentals of Thermodynamics (Wiley, New York, 1998)

  41. H. Yalçın, M. Gürü, Mühendislik Termodinamiği (Ankara, 2004) (in Turkish)

  42. E. Belin-Ferre, Basics of Thermodynamics and Phase Transitions in Complex Intermetallics (World Scientific, 2008)

  43. Z. Nishiyama, Martensitic Transformation (Elsevier, 2012)

  44. H. Funakubo, J. Kennedy, Shape Memory Alloys (Gordon and Breach, 1987)

  45. W.J. Buehler, F.E. Wang, Ocean Eng. 1, 105 (1968)

    Article  Google Scholar 

  46. D.C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications (Springer, 2008)

  47. I. Mayergoyz, The Science Hysteresis: Physical modeling, micromagnetics, and magnetization dynamics (Gulf Professional Publishing, 2006)

  48. A. Jena, M.C. Chaturvedi, Phase Transformation in Materials (Prentice Hall, 1992)

  49. P. Ehrenfest, Phasenumwandlungen im ueblichen und erweiterten Sinn, classifiziert nach den entsprechenden Singularitaeten des thermodynamischen Potentiales (NV Noord-Hollandsche, Uitgevers Maatschappij, 1933)

  50. C. Wayman, K. Shimizu, Metal Sci. J. 6, 175 (1972)

    Article  Google Scholar 

  51. R. Dasgupta et al., J. Mater. Res. Technol. 3, 264 (2014)

    Article  Google Scholar 

  52. W. Rottiers, in Korolev’s Reading (Korolev’s Reading, Rusia, 2011) p. 250

  53. K. Worden, W.A. Bullough, J. Haywood, Smart Technologies (World Scientific, 2003)

  54. A. Ziolkowski, Pseudoelasticity of Shape Memory Alloys: Theory and Experimental Studies (Butterworth-Heinemann, 2015)

  55. W. Huang, W. Toh, J. Mater. Sci. Lett. 19, 1549 (2000)

    Article  Google Scholar 

  56. P. Angelo, R. Subramanian, Powder Metallurgy: Science, Technololgy and Applications (PHI Learning Pvt. Ltd., 2008)

  57. M. Zarinejad, Y. Liu, Dependence of Transformation Temperatures of Shape Memory Alloys on the Number and Concentration of Valence Electrons (Nova Science Publishers, Inc., New York, 2010) p. 339

  58. J. Ma, I. Karaman, R.D. Noebe, Int. Mater. Rev. 55, 257 (2010)

    Article  Google Scholar 

  59. Y. Waseda, E. Matsubara, K. Shinoda, X-ray Diffraction Crystallography: Introduction, Examples and Solved Problems (Springer Science & Business Media, 2011)

  60. D. Misell, C. Stolinski, Scanning Electron Microscopy and X-Ray Microanalysis (Pergamon, 1983)

  61. Y. Zheng et al., J. Alloys Compd. 441, 317 (2007)

    Article  Google Scholar 

  62. A. Paiva, M.A. Savi, Math. Probl. Eng. 2006, (2006)

  63. K. Otsuka, K. Shimizu, Int. Metals Rev. 31, 93 (1986)

    Google Scholar 

  64. W.J. Buehler, Nickel-based Alloys, US Patent 174 (R.C. Wiley, 1965) p. 851

  65. J. Van Humbeeck, M. Chandrasekaran, L. Delaey, Endeavour 15, 148 (1991)

    Article  Google Scholar 

  66. W.J. Buehler, J. Gilfrich, R. Wiley, J. Appl. Phys. 34, 1475 (1963)

    Article  ADS  Google Scholar 

  67. A. Melzer, D. Stoeckel, Open Med. Dev. J. 2, 32 (2010)

    Article  Google Scholar 

  68. C.A. Canbay, I. Özkul, Turk. J. Eng. 2, 7 (2018)

    Article  Google Scholar 

  69. M. Es-Souni, M. Es-Souni, H. Fischer-Brandies, Anal. Bioanal. Chem. 381, 557 (2005)

    Article  Google Scholar 

  70. E. Kalay, A.E. Nomer, M.A. Kurgun, Turk. J. Eng. 2, 98 (2018)

    Google Scholar 

  71. P. Sittner et al., Mech. Mater. 38, 475 (2006)

    Article  Google Scholar 

  72. H. Okamoto, Desk: Handbook: Phase Diagrams for Binary Alloys (ASM International, 2000)

  73. V. Asanović, D. Kemal, Metalurgija 13, 59 (2007)

    Google Scholar 

  74. R. Ferreira et al., Mater. Res. 3, 119 (2000)

    Article  Google Scholar 

  75. M. Eskil, N. Kayali, Mater. Lett. 60, 630 (2006)

    Article  Google Scholar 

  76. S. Naichao, Chin. J. Mater. Res. 5, (1999)

  77. N.-c. Si, G.-q. Zhao, D.-q. Yang, Chin. J. Nonferr. Metals 13, 398 (2003)

    Google Scholar 

  78. O. Adigüzel, Mater. Res. Bull. 30, 755 (1995)

    Article  Google Scholar 

  79. A. Abu-Arab, M. Chandrasekaran, M. Ahlers, Scr. Metall. 18, 709 (1984)

    Article  Google Scholar 

  80. N. Kayali, R. Zengin, O. Adiguzel, Metall. Mater. Trans. A 31, 349 (2000)

    Article  Google Scholar 

  81. A. Amengual, Scr. Metall. Mater. 26, 1795 (1992)

    Article  Google Scholar 

  82. J. Kwarciak, Z. Bojarski, H. Morawiec, J. Mater. Sci. 21, 788 (1986)

    Article  ADS  Google Scholar 

  83. R. Kainuma, S. Takahashi, K. Ishida, Metall. Mater. Trans. A 27, 2187 (1996)

    Article  Google Scholar 

  84. Z. Lin et al., Intermetallics 8, 605 (2000)

    Article  Google Scholar 

  85. J. Font et al., Mater. Sci. Eng.: A 354, 207 (2003)

    Article  Google Scholar 

  86. S. Husain, P. Clapp, J. Mater. Sci. 22, 2351 (1987)

    Article  ADS  Google Scholar 

  87. S. Miyazaki et al., Trans. Jpn. Inst. Metals 22, 244 (1981)

    Article  Google Scholar 

  88. S. Vajpai, R. Dube, S. Sangal, Mater. Sci. Eng.: A 529, 378 (2011)

    Article  Google Scholar 

  89. C. Lexcellent, Shape-Memory Alloys Handbook (John Wiley & Sons, 2013)

  90. E. Hornbogen, N. Jost, The Martensitic Transformation in Science and Technology (DGM Metallurgy Information, 1989)

  91. R. Kainuma, S. Takahashi, K. Ishida, J. Phys. IV 5, C8 (1995)

    Google Scholar 

  92. N. Zarubova, V. Novák, Mater. Sci. Eng.: A 378, 216 (2004)

    Article  Google Scholar 

  93. C.A. Canbay, Z.K. Genc, M. Sekerci, Appl. Phys. A 115, 371 (2014)

    Article  ADS  Google Scholar 

  94. C.A. Canbay, S. Gudeloglu, Z.K. Genc, Int. J. Thermophys. 36, 783 (2015)

    Article  ADS  Google Scholar 

  95. Y. Jiao et al., J. Alloys Compd. 491, 627 (2010)

    Article  Google Scholar 

  96. A. Sato et al., J. Phys. Coll. 43, C4 (1982)

    Google Scholar 

  97. A. Sato, Y. Yamaji, T. Mori, Acta Metall. 34, 287 (1986)

    Article  Google Scholar 

  98. K. Verbeken, N. Van Caenegem, D. Raabe, Micron 40, 151 (2009)

    Article  Google Scholar 

  99. A. Charfi et al., C. R. Chim. 12, 270 (2009)

    Article  Google Scholar 

  100. Y. Wen et al., Mater. Sci. Eng.: A 457, 334 (2007)

    Article  Google Scholar 

  101. T. Bouraoui, F. Jemal, T.B. Zineb, Strength Mater. 40, 203 (2008)

    Article  Google Scholar 

  102. P. Kumar, D. Lagoudas, in Shape Memory Alloys (Springer, 2008) p. 1

  103. P. Webster et al., Philos. Mag. B 49, 295 (1984)

    Article  ADS  Google Scholar 

  104. H.Y. Kim et al., Mater. Trans. 45, 2443 (2004)

    Article  Google Scholar 

  105. J. Lelatko, H. Morawiec, J. Phys. IV 11, Pr8 (2001)

    Google Scholar 

  106. W.F. Smith, J. Hashemi, Foundations of Materials Science and Engineering (Mcgraw-Hill Publishing, 2006)

  107. H. Rösner et al., Acta Mater. 49, 1541 (2001)

    Article  Google Scholar 

  108. T. Tadaki, Shape Memory Materials (Cambridge University Press, 1998) p. 97

  109. G. Lojen et al., J. Mater. Proc. Technol. 162, 220 (2005)

    Article  Google Scholar 

  110. W. Duerig, Engineering Aspects of Shape Memory Alloys (Heinemann London Boston MA, 1990)

  111. D.E. Hodgson, W. Ming, R.J. Biermann, Metals Handbook ASM International, tenth edition, Vol. 2 (ASM International, 1990) p. 897

  112. J.F. Wakjira, The VT1 Shape Memory Alloy Heat Engine Design (Virginia Tech, 2001)

  113. M. Indirli, M.G. Castellano, Int. J. Architect. Herit. 2, 93 (2008)

    Article  Google Scholar 

  114. D. Cardone, R. Angiuli, G. Gesualdi, Int. J. Architect. Herit. 1, (2019)

  115. P.B. Leal, M.A. Savi, Aerospace Sci. Technol. 76, 155 (2018)

    Article  Google Scholar 

  116. W.-T. Jhou et al., J. Alloys Compd. 738, 336 (2018)

    Article  Google Scholar 

  117. E. Aldirmaz et al., J. Alloys Compd. 743, 227 (2018)

    Article  Google Scholar 

  118. M. Hao et al., Nat. Energy 3, 899 (2018)

    Article  ADS  Google Scholar 

  119. A. Saren, A. Smith, K. Ullakko, Microfluidics Nanofluidics 22, 38 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İskender Özkul.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özkul, İ., Kurgun, M.A., Kalay, E. et al. Shape memory alloys phenomena: classification of the shape memory alloys production techniques and application fields. Eur. Phys. J. Plus 134, 585 (2019). https://doi.org/10.1140/epjp/i2019-12925-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12925-2

Navigation