Skip to main content

Properties and Behavior of Shape Memory Alloys in the Scope of Biomedical and Engineering Applications

  • Chapter
  • First Online:
Biomaterials in Clinical Practice

Abstract

Shape memory alloys (SMA) are widely and frequently applied in cases when it is useful to employ their advantages through specific behavior (pseudoelasticity or shape memory effect) in various conditions. Effects of shape memory and pseudoelasticity can be employed in innovative ways as actuating or sensing elements in many nowadays applications. There are various alloying elements which can form a SMA such as Ni, Ti, Cr, Cu, etc., but the most frequently used and known alloy is NiTi. By addition of other alloying elements the properties of the SMA can be changed to fit demands of the consumers. The investigation of such materials is very important for successful application, so the researchers investigate procedures and algorithms for comparison of experimental and numerical results to provide the best performance of SMA devices. Strong thermomechanical coupling is observed during the SMA loading, so SMA are known as highly thermosensitive materials what can be used as advantage, but also it can be a problem during the alloy production process. The strong thermomechanical coupling and the related high thermosensitivity increase the need for simulation of complex thermomechanical response in realistic problems. The complex stress states and deformation range impose the requirements for accurate analysis of large strain problems. Application of SMA started several decades ago with an engineering application in pipe couplings, while today one of the most commonly known are biomedical applications (i.e. cardiovascular stents and orthodontic braces). The main reasons for wide range of biomedical applications of NiTi alloys are the specific behavior, good biocompatibility and good fatigue performance what is important factor under the high cyclic external loading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerofit I (2015) Shape memory alloy (SMA), fluid fitting system, product handbook and engineering data. URL http://www.aerofit.com/images/aerofit/pdfs/sma/catalog/SMA-catalog_book-11-08.pdf

  • Arghavani J (2010) Thermo-mechanical behavior of shape memory alloys under multiaxial loadings: constitutive modeling and numerical implementation at small and finite strains. PhD thesis, Sharif University of Technology, Tehran, Iran

    Google Scholar 

  • Arghavani J, Auricchio F, Naghdabadi R, Reali A, Sohrabpour S (2010a) A 3–D phenomenological constitutive model for shape memory alloys under multiaxial loadings. Int J Plasticity 26(7):976–991. doi:10.1016/j.ijplas.2009.12.003

    Article  MATH  Google Scholar 

  • Arghavani J, Auricchio F, Naghdabadi R, Reali A, Sohrabpour S (2010b) A 3D finite strain phenomenological constitutive model for shape memory alloys considering martensite reorientation. Continuum Mech Therm 22(5):345–362. doi:10.1007/s00161-010-0155-8, URL 10.1007/s00161-010-0155-8

  • Arghavani J, Auricchio F, Naghdabadi R, Reali A, Sohrabpour S (2010c) A 3D finite strain phenomenological constitutive model for shape memory alloys considering martensite reorientation. Continuum Mech Therm 22(5):345–362. doi:10.1007/s00161-010-0155-8

    Article  MATH  MathSciNet  Google Scholar 

  • Auricchio F (2001) A robust integration-algorithm for a finite-strain shape memory alloy superelastic model. Int J Plasticity 17(7):971–990. doi:10.1016/S0749-6419(00)00050-4

    Article  MATH  Google Scholar 

  • Auricchio F, Petrini L (2002) Improvements and algorithmical considerations on a recent three-dimensional model describing stress-induced solid phase transformations. Int J Numer Meth Eng 55(11):1255–1284. doi:10.1002/nme.619

  • Auricchio F, Petrini L (2004a) A three-dimensional model describing stress-temperature induced solid phase transformations: thermomechanical coupling and hybrid composite applications. Int J Numer Meth Eng 61(5):716–737. doi:10.1002/nme.1087

    Article  MATH  Google Scholar 

  • Auricchio F, Petrini L (2004b) A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems. Int J Numer Meth Eng 61(6):807–836. doi:10.1002/nme.1086

    Article  MATH  MathSciNet  Google Scholar 

  • Auricchio F, Boatti E, Conti M (2015a) Chapter 11—SMA biomedical applications. In: Lecce L, Concilio A (eds) Shape memory alloy engineering. Butterworth-Heinemann, Boston, pp 307–341. doi:10.1016/B978-0-08-099920-3.00011-5

  • Auricchio F, Boatti E, Conti M (2015b) Chapter 12—SMA cardiovascular applications and computer-based design. In: Concilio A, Lecce L (eds) Shape memory alloy engineering. Butterworth-Heinemann, Boston, pp 343–367. doi:10.1016/B978-0-08-099920-3.00012-7

  • Barbarino S, Saavedra Flores E, Ajaj R, Dayyani I, Friswell M (2014) A review on shape memory alloys with applications to morphing aircraft. Smart Mater Struct 23(6):063001. doi:10.1088/0964-1726/23/6/063001

  • Boyd J, Lagoudas D (1996) A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy. Int J Plasticity 12(6):805–842. doi:10.1016/S0749-6419(96)00030-7

  • Buehler W, Gilfrich J, Wiley R (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34(5):1475–1477

    Article  Google Scholar 

  • Christ D, Reese S (2009) A finite element model for shape memory alloys considering thermomechanical couplings at large strains. Int J Solids Struct 46(20):3694–3709. doi:10.1016/j.ijsolstr.2009.06.017

    Article  MATH  Google Scholar 

  • Duering T, Melton K, Stockel D, Wayman C (eds) (1990) Engineering aspects of shape memory alloys. Butterworth-Heinemann, London

    Google Scholar 

  • Dunić V, Pieczyska E, Tobushi H, Staszczak M, Slavković R (2014) Experimental and numerical thermo-mechanical analysis of shape memory alloy subjected to tension with various stress and strain rates. Smart Mater Struct 23(5):055026. doi:10.1088/0964-1726/23/5/055026

  • Grabe C (2007) Experimental testing and parameter identification on the multidimensional material behavior of shape memory alloys. PhD thesis, Institut für Mechanik, Ruhr-Universität Bochum, Germany

    Google Scholar 

  • Grandi D, Maraldi M, Molari L (2012) A macroscale phase-field model for shape memory alloys with non-isothermal effects: Influence of strain rate and environmental conditions on the mechanical response. Acta Mater 60(1):179–191. doi:10.1016/j.actamat.2011.09.040

    Article  Google Scholar 

  • Haldar K, Lagoudas DC, Karaman I (2014) Magnetic field-induced martensitic phase transformation in magnetic shape memory alloys: modeling and experiments. J Mech Phys Solids 69:33–66. doi:10.1016/j.jmps.2014.04.011

    Article  MATH  MathSciNet  Google Scholar 

  • Hallai J, Kyriakides S (2013) Underlying material response for Lüders-like instabilities. Int J Plasticity 47:1–12. doi:10.1016/j.ijplas.2012.12.002

    Article  Google Scholar 

  • Hartl D, Chatzigeorgiou G, Lagoudas D (2010) Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys. Int J Plasticity 26(10):1485–1507. doi:10.1016/j.ijplas.2010.01.002

    Article  MATH  Google Scholar 

  • Helm D (2007) Numerical simulation of martensitic phase transitions in shape memory alloys using an improved integration algorithm. Int J Numer Meth Eng 69(10):1997–2035. doi:10.1002/nme.1822

    Article  MATH  MathSciNet  Google Scholar 

  • Helm D, Haupt P (2003) Shape memory behaviour: modelling within continuum thermomechanics. Int J Solids Struct 40(4):827–849. doi:10.1016/S0020-7683(02)00621-2

    Article  MATH  Google Scholar 

  • Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Design 56:1078–1113. doi:10.1016/j.matdes.2013.11.084

    Article  Google Scholar 

  • Jovanović M, Lazić V, Adamović D, Ratković N (2003) MaÅ¡inski materijali. Univerzitet u Kragujevcu, MaÅ¡inski fakultet u Kragujevcu

    Google Scholar 

  • Lagoudas D (2010) Shape memory alloys: modeling and engineering applications. Springer, Berlin

    Google Scholar 

  • Lagoudas D, Hartl D, Chemisky Y, Machado L, Popov P (2012) Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys. Int J Plasticity 32–33:155–183. doi:10.1016/j.ijplas.2011.10.009

    Article  Google Scholar 

  • Leclercq S, Lexcellent C (1996) A general macroscopic description of the thermomechanical behavior of shape memory alloys. J Mech Phys Solids 44(6):953–980. doi:10.1016/0022-5096(96)00013-0

    Article  Google Scholar 

  • Lexcellent C, Vivet A, Bouvet C, Calloch S, Blanc P (2002) Experimental and numerical determinations of the initial surface of phase transformation under biaxial loading in some polycrystalline shape-memory alloys. J Mech Phys Solids 50(12):2717–2735. doi:10.1016/S0022-5096(02)00007-8

    Article  MATH  Google Scholar 

  • Liang C, Rogers C (1992) A multi-dimensional constitutive model for shape memory alloys. J Eng Math 26(3):429–443. doi:10.1007/BF00042744

    Article  MATH  Google Scholar 

  • Menna C, Auricchio F, Asprone D (2015) Chapter 13—Applications of shape memory alloys in structural engineering. In: Concilio LL (ed) Shape memory alloy engineering. Butterworth-Heinemann, Boston, pp 369–403. doi:10.1016/B978-0-08-099920-3.00013-9

  • Mirzaeifar R, DesRoches R, Yavari A (2011) Analysis of the rate–dependent coupled thermo-mechanical response of shape memory alloy bars and wires in tension. Continuum Mech Thermodyn 23(4):363–385. doi:10.1007/s00161-011-0187-8

    Article  MATH  MathSciNet  Google Scholar 

  • Morin C, Moumni Z, Zaki W (2011) A constitutive model for shape memory alloys accounting for thermomechanical coupling. Int J Plasticity 27(5):748–767. doi:10.1016/j.ijplas.2010.09.005

    Article  MATH  Google Scholar 

  • Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni–based shape memory alloys. Prog Mater Sci 50(5):511–678. doi:10.1016/j.pmatsci.2004.10.001

    Article  Google Scholar 

  • Otsuka K, Wayman C (eds) (1998) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  • Panico M, Brinson L (2007) A three-dimensional phenomenological model for martensite reorientation in shape memory alloys. J Mech Phys Solids 55(11):2491–2511. doi:10.1016/j.jmps.2007.03.010

    Article  MATH  MathSciNet  Google Scholar 

  • Pieczyska E (2008) Analiza doÅ›wiadczalna wlaÅ›ciwoÅ›ci termomechanicznych stopów TiNi oraz poliuretanu z pamiecia ksztaltu (Experimental analysis of thermomechanical properties of TiNi shape memory alloys and shape memory polyurethane). Prace IPPT-IFTR Reports, Institute of Fundamental Technologica Research of the Polish Academy of Sciences, in Polish, graphs in English, Habilitation thesis

    Google Scholar 

  • Pieczyska E (2012) Experimental investigation of stress-induced martensite transformation activity in shape memory alloy. Report grant No NN501 2208 37, Institute of Fundamental Technological Research of the Polish Academy of Sciences

    Google Scholar 

  • Pieczyska E (2015) Mechanical behavior and infrared imaging of ferromagnetic NiFeGaCo SMA single crystal subjected to subsequent compression cycles. Meccanica 50(2):585–590. doi:10.1007/s11012-013-9868-7

    Article  Google Scholar 

  • Pieczyska E, Gadaj S, Nowacki W, Tobushi H (2006) Phase–transformation fronts evolution for stress- and strain-controlled tension tests in TiNi shape memory alloy. Exp Mech 46(4):531–542. doi:10.1007/s11340-006-8351-y

    Article  Google Scholar 

  • Pieczyska E, Dutkiewicz J, Masdeu F, Luckner J, Maciak R (2011) Investigation of thermomechanical properties of ferromagnetic NiFeGa shape memory alloy subjected to pseudoelastic compression test. Arch Metall Mater 56(2):401–408. doi:10.2478/v10172-011-0043-7

    Article  Google Scholar 

  • Pieczyska E, Tobushi H, Kulasinski K (2013) Development of transformation bands in TiNi SMA for various stress and strain rates studied by a fast and sensitive infrared camera. Smart Mater Struct 22(3):035007. doi:10.1088/0964-1726/22/3/035007

  • Pieczyska E, Staszczak M, Dunić V, Slavković R, Tobushi H, Takeda K (2014) Development of stress-induced martensitic transformation in TiNi shape memory alloy. J Mater Eng Perform 23(7):2505–2514. doi:10.1007/s11665-014-0959-y

  • Popov P, Lagoudas D (2007) A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite. Int J Plasticity 23(10–11):1679–1720. doi:10.1016/j.ijplas.2007.03.011 (in honor of Professor Dusan Krajcinovic)

  • Qidwai M, Lagoudas D (2000a) Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms. Int J Numer Meth Eng 47(6):1123–1168

    Article  MATH  Google Scholar 

  • Qidwai M, Lagoudas D (2000b) On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material. Int J Plasticity 16(10–11):1309–1343. doi:10.1016/S0749-6419(00)00012-7

    Article  MATH  Google Scholar 

  • Raniecki B, Lexcellent C (1994) RL-models of pseudoelasticity and their specification for some shape memory solids. Eur J Mech A Solid 13(1):21–50

    MATH  Google Scholar 

  • Raniecki B, Lexcellent C (1998) Thermodynamics of isotropic pseudoelasticity in shape memory alloys. Eur J Mech A Solid 17(2):185–205. doi:10.1016/S0997-7538(98)80082-X

    Article  MATH  Google Scholar 

  • Reese S, Christ D (2008) Finite deformation pseudo-elasticity of shape memory alloys—constitutive modelling and finite element implementation. Int J Plasticity 24(3):455–482. doi:10.1016/j.ijplas.2007.05.005

    Article  MATH  Google Scholar 

  • Shaw J, Kyriakides S (1995) Thermomechanical aspects of NiTi. J Mech Phys Solids 43(8):1243–1281. doi:10.1016/0022-5096(95)00024-D

  • Song G, Ma N, Li HN (2006) Applications of shape memory alloys in civil structures. Eng Struct 28(9):1266–1274. doi:10.1016/j.engstruct.2005.12.010

    Article  Google Scholar 

  • Souza A, Mamiya E, Zouain N (1998) Three-dimensional model for solids undergoing stress-induced phase transformations. Eur J Mech A Solid 17(5):789–806. doi:10.1016/S0997-7538(98)80005-3

    Article  MATH  Google Scholar 

  • Stupkiewicz S, Petryk H (2013) A robust model of pseudoelasticity in shape memory alloys. Int J Numer Meth Eng 93(7):747–769. doi:10.1002/nme.4405

    Article  MATH  MathSciNet  Google Scholar 

  • Teeriaho JP (2013) An extension of a shape memory alloy model for large deformations based on an exactly integrable Eulerian rate formulation with changing elastic properties. Int J Plasticity 43:153–176. doi:10.1016/j.ijplas.2012.11.009

    Article  Google Scholar 

  • Thamburaja P (2010) A finite-deformation-based phenomenological theory for shape-memory alloys. Int J Plasticity 26(8):1195–1219. doi:10.1016/j.ijplas.2009.12.004 (special Issue In Honor of Lallit Anand)

  • Thamburaja P, Anand L (2001) Polycrystalline shape-memory materials: effect of crystallographic texture. J Mech Phys Solids 49(4):709–737. doi:10.1016/S0022-5096(00)00061-2

    Article  MATH  Google Scholar 

  • Tobushi H, Matsui R, Takeda K, Pieczyska E (2013) Mechanical properties of shape memory materials. Materials science and technologies, mechanical engineering theory and applications. NOVA Publishers, New York

    Google Scholar 

  • Wang M, Jiang M, Liao G, Guo S, Zhao X (2012) Martensitic transformation involved mechanical behaviors and wide hysteresis of NiTiNb shape memory alloys. Prog Nat Sci Mater Int 22(2):130–138. doi:10.1016/j.pnsc.2012.03.010

    Article  Google Scholar 

  • Yang S, Dui G (2013) Temperature analysis of one-dimensional NiTi shape memory alloys under different loading rates and boundary conditions. Int J Solids Struct 50(20–21):3254–3265. doi:10.1016/j.ijsolstr.2013.05.026

    Article  Google Scholar 

  • Zaki W, Moumni Z (2007) A three–dimensional model of the thermomechanical behavior of shape memory alloys. J Mech Phys Solids 55(11):2455–2490. doi:10.1016/j.jmps.2007.03.012

    Article  MATH  Google Scholar 

  • Zhang X, Sehitoglu H (2004) Crystallography of the B2 → R → B19′ phase transformations in NiTi. Mater Sci Eng A 374(1–2):292–302. doi:10.1016/j.msea.2004.03.013

Download references

Acknowledgements

The research has been carried out with support of the Ministry of Education, Science and Technological Development, Serbia under Grant No. TR32036 and No. III41007, the National Science Center, Poland under Grant No. 2014/13/B/ST8/04280 and No. 2014/15/B/ST8/04368 and KMM-VIN Research Fellowship (1.08-13.09, 2013) for stay of Vladimir Dunić at the IPPT, PAN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Dunić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Dunić, V., Slavković, R., Pieczyska, E.A. (2018). Properties and Behavior of Shape Memory Alloys in the Scope of Biomedical and Engineering Applications. In: Zivic, F., Affatato, S., Trajanovic, M., Schnabelrauch, M., Grujovic, N., Choy, K. (eds) Biomaterials in Clinical Practice . Springer, Cham. https://doi.org/10.1007/978-3-319-68025-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68025-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68024-8

  • Online ISBN: 978-3-319-68025-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics