Skip to main content
Log in

Lump, lumpoff and rogue waves for a (2 + 1)-dimensional reduced Yu-Toda-Sasa-Fukuyama equation in a lattice or liquid

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Lattices and liquids are common in physics, engineering, science, nature and life. The Yu-Toda-Sasa-Fukuyama (YTSF) equation describes the elastic quasiplane wave in a lattice or interfacial wave in a two-layer liquid. A (2 + 1)-dimensional reduced YTSF equation is studied in this paper. With symbolic computation, we get the lump solutions more general than those in the existing literature, which orient in all directions of space and time with more parameters. Via the lump solutions, we get the moving path of lump waves, lumpoff solutions and moving path of the lumpoff waves, which describe interactions between one stripe soliton and a lump wave. When the lump solutions produce the one stripe solitons, the lumpoff solutions are constructed. When a pair of stripe solitons cut lump wave, the rogue wave emerges. Time and place for the rogue wave to appear can be obtained from the coordinates of the interaction points between a pair of stripe solitons and the lump wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Burakov, V. Kiris, M. Nedelko, N. Tarasenka, A. Nevar, J. Appl. Phys. 51, 484001 (2018)

    Google Scholar 

  2. A.P. Gaiduk, T.A. Pham, M. Govoni, F. Paesani, G. Galli, Nat. Commun. 9, 247 (2018)

    Article  ADS  Google Scholar 

  3. R.B. Lsrael, Convexity in the Theory of Lattice Gases (Princeton University Press, Princeton, 2015)

  4. R. Landig, L. Hruby, N. Dogra, M. Landini, R. Mottl, T. Donner, T. Esslinger, Nature 532, 476 (2016)

    Article  ADS  Google Scholar 

  5. N. Barnea, L. Contessi, D. Gazit, F. Pederiva, U. Van Kolck, Phys. Rev. Lett. 114, 052501 (2015)

    Article  ADS  Google Scholar 

  6. M. Gedalin, T.C. Scott, Y.B. Band, Phys. Rev. Lett. 78, 448 (1997)

    Article  ADS  Google Scholar 

  7. A.R. Seadawy, Comput. Math. Appl. 71, 201 (2016)

    Article  MathSciNet  Google Scholar 

  8. X.Y. Xie, G.Q. Meng, Nonlinear Dyn. 93, 675 (2018)

    Article  Google Scholar 

  9. X.Y. Xie, G.Q. Meng, Chaos Solitons Fractals 107, 143 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. N. Akhmediev, A. Ankiewicz, M. Taki, Phys. Lett. A 373, 675 (2009)

    Article  ADS  Google Scholar 

  11. L. Stenflo, M. Marklund, J. Plasma Phys. 76, 293 (2010)

    Article  ADS  Google Scholar 

  12. Z.Y. Yan, Commun. Theor. Phys. 54, 947 (2010)

    Article  ADS  Google Scholar 

  13. D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Nature 450, 1054 (2007)

    Article  ADS  Google Scholar 

  14. Y.V. Bludov, V.V. Konotop, N. Akhmediev, Eur. Phys. J. ST 185, 169 (2010)

    Article  Google Scholar 

  15. W.M. Moslem, R. Sabry, S.K. EI-Labany, P.K. Shukla, Phys. Rev. E 84, 066402 (2011)

    Article  ADS  Google Scholar 

  16. H. Bailung, S.K. Sharma, Y. Nakamura, Phys. Rev. Lett 107, 255005 (2011)

    Article  ADS  Google Scholar 

  17. W.X. Ma, Phys. Lett. A 379, 1975 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. J.Y. Yang, W.X. Ma, Anal. Math. Phys. 8, 427 (2018)

    Article  MathSciNet  Google Scholar 

  19. X. Lü, S.T. Chen, W.X. Ma, Nonlinear Dyn. 86, 523 (2016)

    Article  Google Scholar 

  20. P. Zhang, M. Jia, Chin. Phys. B 27, 120201 (2018)

    Article  Google Scholar 

  21. W.Q. Peng, S.F. Tian, T.T. Zhang, Phys. Lett. A 27, 2701 (2018)

    Article  ADS  Google Scholar 

  22. T. Fang, Y.H. Wang, Anal. Math. Phys. 58, 1 (2018)

    Google Scholar 

  23. H.M. Yin, B. Tian, J. Chai, X.Y. Wu, W.R. Sun, Appl. Math. Lett. 58, 178 (2016)

    Article  MathSciNet  Google Scholar 

  24. A.M. Wazwaz, Appl. Math. Comput. 203, 592 (2008)

    MathSciNet  Google Scholar 

  25. R. Hirota, Y. Ohta, J. Phys. Soc. Jpn. 60, 798 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Tian, B., Qu, QX. et al. Lump, lumpoff and rogue waves for a (2 + 1)-dimensional reduced Yu-Toda-Sasa-Fukuyama equation in a lattice or liquid. Eur. Phys. J. Plus 134, 578 (2019). https://doi.org/10.1140/epjp/i2019-12909-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12909-2

Navigation