Skip to main content
Log in

Effects of initial stresses on the electromechanical coupling coefficient of SH wave propagation in multilayered PZT-5H structures

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The electromechanical coupling factor (K2) presents a key parameter in acoustic devices that reflects the influence of piezoelectricity on the phase velocity of elastic waves. The higher this coefficient, the stronger the dependence of the characteristics of wave propagation on the electric-system parameters. Here, we investigate numerically K2 for third- and fourth-order shear wave modes (SH2 and SH3) in arbitrarily anisotropic multilayered PZT-5H laminates with various orientations. The open-circuit (OC) and short-circuit (SC) are applied to determine this key parameter, while the SH2 and SH3 are chosen because they have a higher K2 in comparison with other SHm modes. Additionally, the effects of initial stresses are taken into account. We find that the initial stress has a significant influence on the SHm (m = 2, 3 modes, especially for thick laminates. The characteristics of SH2 and SH3 modes are analyzed for different thickness ratios of (010)-[100] to (0 - 10 -[100] and periods of PZT-5H layered structures. Results show that K2 varies with the thickness ratio and periods of the laminates. Overall, K2 can reach about 30% and 44% for SH2 and SH3 modes in a laminate with unit thickness ratio and period. Moreover, the sensitivity of K2 to the thickness of the middle layer is discussed in detail. The mechanical stresses, mechanical displacements, electric displacements and electric potentials for SH2 mode are discussed as illustrative examples. Results demonstrate that ([(010)-[100]/(0 - 10 -[100]/(010)-[100])N structures have some useful properties in the design of acoustic wave constructed from piezoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Curie, P. Curie, Bull. Soc. Miner. France 3-4, 90 (1880)

    Google Scholar 

  2. G. Lippmann, Ann. Chim. Phys. 24, 145 (1881)

    Google Scholar 

  3. C.M. Lin, W.C. Lien, V.V. Felmetsger, M.A. Hopcroft, D.G. Senesky, A.P. Pisano, Appl. Phys. Lett. 97, 141907 (2010)

    Article  ADS  Google Scholar 

  4. T. Aubert, J. Bardong, O. Legrani, O. Elmazria, M.B. Assouar, G. Bruckner, A. Talbi, J. Appl. Phys. 114, 014505 (2013)

    Article  ADS  Google Scholar 

  5. P. Hauptmann, A. Lucklum, A. Piittmer, B. Henning, Sensors Actuat. A 67, 32 (1998)

    Article  Google Scholar 

  6. I.T. Tang, H.J. Chen, W.C. Hwang, Y.C. Wang, M.P. Houng, Y.H. Wang, J. Cryst. Growth 262, 461 (2004)

    Article  ADS  Google Scholar 

  7. C.W. Lim, L.H. He, Int. J. Mech. Sci. 43, 2479 (2001)

    Article  Google Scholar 

  8. J. Sun, X. Xu, C.W. Lim, Z. Zhou, S. Xiao, Compos. Struct. 141, 221 (2016)

    Article  Google Scholar 

  9. D. Berlincourt, in Ultrasonic Transducer Materials, edited by O.E. Mattiat (Springer, Boston, 1971) Chapt. 2, p. 63, https://doi.org/10.1007/978-1-4757-0468-6_2

    Chapter  Google Scholar 

  10. C. Othmani, F. Takali, A. Njeh, Optik 148, 63 (2017)

    Article  ADS  Google Scholar 

  11. F. Ebrahimi, M.R. Barati, Eur. Phys. J. Plus 132, 88 (2017)

    Article  Google Scholar 

  12. Y. Wenjun., L. Xu., S. Shengping, Philos. Mag. 97, 3186 (2017)

    Article  Google Scholar 

  13. Y. Wenjun, D. Qian, L. Xu, S. Shengping, Smart Mater. Struct. 27, 1 (2018)

    Google Scholar 

  14. F. Ebrahimi, A. Dabbagh, Eur. Phys. J. Plus 132, 153 (2017)

    Article  Google Scholar 

  15. F. Ebrahimi, A. Dabbagh, Eur. Phys. J. Plus 133, 97 (2018)

    Article  Google Scholar 

  16. C. Othmani, F. Takali, A. Njeh, Eur. Phys. J. Plus 132, 504 (2017)

    Article  Google Scholar 

  17. C. Othmani, F. Takali, A. Njeh, Superlattices Microstruct. 106, 86 (2017)

    Article  ADS  Google Scholar 

  18. C. Othmani, F. Takali, A. Njeh, Superlattices Microstruct. 111, 396 (2017)

    Article  ADS  Google Scholar 

  19. C. Othmani, F. Takali, A. Njeh, M.H. Ben Ghozlen, Optik 142, 401 (2017)

    Article  ADS  Google Scholar 

  20. C. Liu, Z. Bian, W. Chen, C. Lü, Compos. Struct. 113, 145 (2014)

    Article  Google Scholar 

  21. Y. Zhou, W. Chen, C. Lü, Composites Part B 43, 3001 (2012)

    Article  Google Scholar 

  22. A. Singhal, S.A. Sahu, S. Chaudhary, Composites Part B 144, 19 (2018)

    Article  Google Scholar 

  23. A. Singhal, S.A. Sahu, S. Chaudhary, Compos. Struct. 184, 714 (2018)

    Article  Google Scholar 

  24. F. Takali, S. Msedi, C. Othmani, A. Njeh, W. Donner, M.H. Ben Ghozlen, Acta Mech. 230, 1027 (2019)

    Article  Google Scholar 

  25. B. Masserey, P. Fromme, NDT & E Inter. 42, 564 (2009)

    Article  Google Scholar 

  26. D. Singh, M. Castaings, C. Bacon, NDT & E Int. 44, 394 (2011)

    Article  Google Scholar 

  27. O.S. Narayanaswamy, J. Am. Ceram. Soc. 61, 146 (1978)

    Article  Google Scholar 

  28. J.S. Wang, A.G. Evans, Acta Mater. 46, 4993 (1998)

    Article  Google Scholar 

  29. P. Fornara, A. Poncet, in Proceedings of the International Electron Devices Meeting (IEEE, 1996) pp. 73--76

  30. F.S. Hickernell, Thin films for SAW devices, in Advances in Surface Acoustic Wave Technology, Systems and Applications, edited by Clemens C.W. Ruppel, Tor A. Fjeldly (World Scientific, 2000) pp. 51--100 https://doi.org/10.1142/4518

    Book  Google Scholar 

  31. José Mari Orellana, Bernard Collet, http://www.sea-acustica.es/fileadmin/publicaciones/Sevilla02_phagen023.pdf

  32. H.Q. Li, K.M. Leung, K.L. Ma, Q. Ye, Y.M. Chong, Y.S. Zou, W.J. Zhang, S.T. Lee, I. Belloa, Appl. Phys. Lett. 91, 201918 (2007)

    Article  ADS  Google Scholar 

  33. Y.Y. Zhou, C.F. Lü, W.Q. Chen, Compos. Struct. 94, 2736 (2012)

    Article  Google Scholar 

  34. J. Yu, Ch. Zhang, Appl. Math. Model. 38, 464 (2014)

    Article  MathSciNet  Google Scholar 

  35. S.A. Sahu, A. Singhal, S. Chaudhary, J. Intell. Mater. Syst. Struct. 29, 423 (2017)

    Article  Google Scholar 

  36. C. Othmani, S. Dahmen, A. Njeh, M.H. Ben Ghozlen, Mech. Res. Commun. 74, 27 (2016)

    Article  Google Scholar 

  37. C. Othmani, F. Takali, A. Njeh, M.H. Ben Ghozlen, Physica B 496, 82 (2016)

    Article  ADS  Google Scholar 

  38. C. Othmani, A. Njeh, M.H. Ben Ghozlen, Aerospace Sci. Technol. 78, 377 (2018)

    Article  Google Scholar 

  39. F. Takali, A. Njeh, D. Schneider, M.H. Ben Ghozlen, Acta Acust. united Ac. 98, 223 (2012)

    Article  Google Scholar 

  40. I. Ben salah, A. Njeh, M.H. Ben Ghozlen, EPJ Web of Conferences 29, 00044 (2012)

    Article  Google Scholar 

  41. D. Royer, D. Dieulesaint, Automatique appliquée, tome 1 (Masson, 1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaofeng Lü.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othmani, C., Zhang, H., Lü, C. et al. Effects of initial stresses on the electromechanical coupling coefficient of SH wave propagation in multilayered PZT-5H structures. Eur. Phys. J. Plus 134, 551 (2019). https://doi.org/10.1140/epjp/i2019-12891-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12891-7

Navigation