Skip to main content
Log in

Entropy optimization in Ag-H2O and Cu-H2O nanomaterial flow with cubic autocatalysis chemical reaction

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Two phase model for simulating flow and heat transport in a water-based liquid containing silver and copper nanoparticles between two rotating stretchable disks in the presence of thermal radiation, Joule heating, viscous dissipation, heat source/sink is addressed. The physical characteristics of irreversibility in nanofluid with cubic autocatalysis chemical reaction are also discussed. Nonlinear systems lead to ordinary ones through implementation of appropriate transformation and then tackle for series solutions. Radial and axial velocities increase nearby the lower disk and decay close to the upper disk with stretching while the tangential velocity decays due to external stimuli (magnet). Eckert number and radiation play a significant role in the enhancement of the temperature profile. Numerical computation of the Nusselt number and skin friction are tabulated and discussed with various effective parameters. The Brinkman number and stretching parameters control the entropy rate by minimizing the values of these parameters. The potential performance towards the different profiles of each parameter is graphically projected and illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in Developments and Applications of Non-Newtonian Flows, edited by D.A. Siginer, H.P. Wang, FED-Vol. 231/MD-Vol. 66 (ASME, New York, 1995) pp. 99--103

  2. I.M. Mahbubul, R. Saidur, M.A. Amalina, Int. J. Heat Mass Transfer 55, 874 (2012)

    Google Scholar 

  3. W.H. Azmi, K.V. Sharma, R. Mamat, G. Najafi, M.S. Mohamad, Sustain. Energy Rev. 53, 1046 (2016)

    Google Scholar 

  4. M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, M.I. Khan, Int. J. Hydrogen Energy 42, 26408 (2017)

    Google Scholar 

  5. T. Hayat, S.A. Khan, M.I. Khan, A. Alsaedi, Comput. Method. Prog. Biomed. 177, 57 (2019)

    Google Scholar 

  6. M. Turkyilmazoglu, Eur. J. Mech. B/Fluid. 76, 1 (2019)

    ADS  Google Scholar 

  7. M.I. Khan, F. Shah, M. Waqas, T. Hayat, A. Alsaedi, Int. J. Therm. Sci. 140, 20 (2019)

    Google Scholar 

  8. M. Rashid, M.I. Khan, T. Hayat, M.I. Khan, A. Alsaedi, J. Mol. Liq. 276, 441 (2019)

    Google Scholar 

  9. M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, M.I. Khan, Eur. Phys. J. Plus 132, 489 (2017)

    Google Scholar 

  10. M. Waqas, M.I. Khan, T. Hayat, A. Alsaedi, M.I. Khan, Eur. Phys. J. Plus 132, 280 (2017)

    Google Scholar 

  11. M.I. Khan, T. Hayat, M.I. Khan, A. Alsaedi, Int. Commun. Heat Mass Transf. 91, 216 (2018)

    Google Scholar 

  12. A. Gandomkar, M.H. Saidi, M.B. Shafii, M. Vandadi, K. Kalan, Appl. Therm. Eng. 116, 56 (2017)

    Google Scholar 

  13. M.I. Khan, T.A. Khan, S. Qayyum, T. Hayat, M.I. Khan, A. Alsaedi, Eur. Phys. J. Plus 133, 329 (2018)

    Google Scholar 

  14. M.A. Nazari, M.H. Ahmadi, R. Ghasempour, M.B. Shafii, Renew. Sust. Energ. Rev. 91, 630 (2018)

    Google Scholar 

  15. H.K. Bizhaem, A. Abbasi, Adv. Powder Technol. 29, 890 (2018)

    Google Scholar 

  16. M. Noor, W. Muhammad, N. Azwadi, C. Sidik, W. Jazair, Renew. Sustain. Energy Rev. 80, 914 (2017)

    Google Scholar 

  17. T. Hayat, M.I. Khan, S. Qayyum, A. Alsaedi, Colloids Surf. A 539, 335 (2018)

    Google Scholar 

  18. T. Hayat, Z. Hussain, A. Alsaedi, M. Mustafa, J. Taiwan Inst. Chem. Eng. 70, e11926 (2017)

    Google Scholar 

  19. A. Zeiny, H. Jin, G. Lin, P. Song, D. Wen, Renew. Energy 122, 443 (2018)

    Google Scholar 

  20. A. Bejan, ASME J. Heat Transf. 101, 718 (1979)

    Google Scholar 

  21. A. Bejan, Entropy Generation Minimization (CRC Press, New York, 1996)

  22. M.I. Khan, S. Qayyum, T. Hayat, M. Waqas, A. Alsaedi, J. Mol. Liq. 259, 274 (2018)

    Google Scholar 

  23. T. Hayat, S. Qayyum, M.I. Khan, A. Alsaedi, Phys. Fluid. 30, 017101 (2018)

    ADS  Google Scholar 

  24. S. Rashidi, S. Akara, M. Bovand, R. Ellahi, Renew. Energy 115, 400 (2018)

    Google Scholar 

  25. T. Hayat, M.I. Khan, S. Qayyum, A. Alsaedi, M.I. Khan, Phys. Lett. A 382, 749 (2018)

    ADS  MathSciNet  Google Scholar 

  26. M. Farooq, Z. Manzoor, M.I. Khan, T. Hayat, A. Anjum, N.A. Mir, Eur. Phys. J. Plus 133, 152 (2018)

    Google Scholar 

  27. M.I. Khan, T. Hayat, M.I. Khan, M. Waqas, A. Alsaedi, J. Phys. Chemist. Solid. 125, 153 (2019)

    ADS  Google Scholar 

  28. A.M. Salem, El-Aziz, Appl. Math. Mod. 32, 1236 (2008)

    Google Scholar 

  29. M.I. Khan, T. Hayat, M. Waqas, M.I. Khan, A. Alsaedi, J. Mol. Liq. 233, 465 (2017)

    Google Scholar 

  30. E. Magyari, Chamkha, Int. J. Therm. Sci. 49, 1821 (2010)

    Google Scholar 

  31. T. Hayat, S. Qayyum, A. Alsaedi, B. Ahmad, Results Phys. 8, 223 (2018)

    ADS  Google Scholar 

  32. M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, J. Theor, Comput. Chem. 16, 1750022 (2017)

    Google Scholar 

  33. S.J. Liao, Homotopy Analysis Method in Non-linear Differential Equations (Springer and Higher Education Press, Heidelberg, 2012)

    Google Scholar 

  34. N.B. Khan, Z. Ibrahim, M.I. Khan, T. Hayat, M.F. Javed, Int. J. Heat Mass Transfer 121, 309 (2018)

    Google Scholar 

  35. M. Turkyilmazoglu, Commun. Nonlinear Sci. Numer. Simul. 17, 4097 (2012)

    ADS  MathSciNet  Google Scholar 

  36. T. Hayat, M.I. Khan, M. Waqas, A. Alsaedi, Results Phys. 7, 256 (2017)

    ADS  Google Scholar 

  37. M. Turkyilmazoglu, Phys. Fluid. 28, 043601 (2016)

    ADS  Google Scholar 

  38. T. Hayat, M.I. Khan, M. Farooq, A. Alsaedi, M. Waqas, T. Yasmeen, Int. J. Heat Mass Transfer 99, 702 (2016)

    Google Scholar 

  39. M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, J. Colloid Interface Sci. 498, 85 (2016)

    ADS  Google Scholar 

  40. M. Turkyilmazoglu, Appl. Math. Mod. 71, 1 (2019)

    Google Scholar 

  41. M.I. Khan, T. Hayat, M.I. Khan, A. Alsaedi, Int. J. Heat Mass Transfer 113, 310 (2017)

    Google Scholar 

  42. S. Abbasbandy, T. Hayat, Commun. Nonlinear Sci. Numer. Simul. 14, 3591 (2009)

    ADS  MathSciNet  Google Scholar 

  43. T. Hayat, S. Javed, M.I. Khan, M.I. Khan, A. Alsaedi, Eur. Phys. J. Plus 134, 172 (2019)

    Google Scholar 

  44. M. Turkyilmazoglu, Advan. App. Math. Mech. 10, 925 (2018)

    Google Scholar 

  45. M. Farooq, Z. Manzoor, M.I. Khan, T. Hayat, A. Anjum, N.A. Mir, Eur. Phys. J. Plus 133, 152 (2018)

    Google Scholar 

  46. M. Turkyilmazoglu, Arch. Mechan. 71, 49 (2019)

    Google Scholar 

  47. T. Hayat, M.I. Khan, M. Waqas, A. Alsaedi, Results Phys. 7, 446 (2017)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ijaz Khan.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.I., Javed, S., Waqas, M. et al. Entropy optimization in Ag-H2O and Cu-H2O nanomaterial flow with cubic autocatalysis chemical reaction. Eur. Phys. J. Plus 134, 500 (2019). https://doi.org/10.1140/epjp/i2019-12820-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12820-x

Navigation