Skip to main content
Log in

Investigation of CuO, Al\(_{{2}}\)O\(_{{3}}\) and Ag nanomaterials on unsteady stagnation point flow of Oldroyd-B–power-law nanofluid with viscous dissipation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper analyses the unsteady stagnation-point flow of Oldroyd-B-power-law nanofluid, which has the characteristics of viscoelasticity and shear thinning simultaneously. Modified Cattaneo–Christov heat flux model is used to describe thermal relaxation and thermal retardation in the heat transfer process. Meanwhile, different from the viscous dissipation of Newtonian fluid, based on the constitutive relation of Oldroyd-B–power-law fluid, the effect of relaxation–retardation viscous dissipation is studied. Additionally, 2 g/l xanthan gum solution is considered as the base fluid and copper oxide (CuO), aluminium oxide (Al\(_{2}\)O\(_{3})\) and silver (Ag) with 5% volume fraction are used as nanoparticles. Their thermal conductivities are calculated by experiments. Utilising similar transformations, partial differential equations are cast into ordinary differential equations. And non-linear analyses are done by taking advantage of the double-parameter transformation expansion method with the base function (DPTEM-BF) method. The outcome illustrates that the velocity holds an opposite trend for Deborah numbers for relaxation and retardation times. Furthermore, among the three nanofluids, Ag–xanthan gum nanofluid has the strongest ability to increase heat transfer, which can provide a theoretical basis for industrial processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B Katzbauer, Polym. Degrad. Stab. 59, 81 (1998)

    Article  Google Scholar 

  2. F García-Ochoa, V E Santos, J A Casas and E Gómez, Biotechnol. Adv. 18, 549 (2000)

    Article  Google Scholar 

  3. B Xie, Flow, heat and mass transfer of Oldroyd-B fluid and pseudo-plastic fluid over a stretching surface, M.Sc. thesis (Beijing University of Civil Engineering and Architecture, 2019)

  4. T Hayat, S Qayyum, A Alsaedi and M Waqas, J. Mol. Liq. 224, 811 (2016)

    Article  Google Scholar 

  5. K G Kumar, G K Ramesh, B J Gireesha and R S R Gorla, Alex. Eng. J. 57, 2139 (2018)

    Article  Google Scholar 

  6. B J Gireesha, K G Kumara, G K Ramesh and B C Prasannakumara, Results Phys. 9, 1555 (2018)

    Article  ADS  Google Scholar 

  7. X H Si, X D Zhu, L C Zheng, X X Zhang and P Lin, Int. J. Heat Mass Transfer 92, 979 (2016)

    Article  Google Scholar 

  8. Y H Lin, L C Zheng and G Chen, Powder Technol. 274, 324 (2015)

    Article  Google Scholar 

  9. S U S Choi and J A Eastman, No. ANL/MSD/CP-84938; CONF-951135-29 (Argonne National Lab, IL, USA, 1995)

  10. Y M Xuan and Q Li, Int. J. Heat Fluid Flow 21, 58 (2000)

    Article  Google Scholar 

  11. J Buongiorno, J. Heat Transfer. 128, 240 (2006)

    Article  Google Scholar 

  12. M Archana, M M Praveena, K G Kumar, S A Shehzad and M Ahmad, Heat Transfer 49, 4907 (2020)

    Article  Google Scholar 

  13. M G Reddy, P Vijayakumari, L Krishna, K G Kumar and B C Prasannakumara, Multidiscip. Model. Mater. Struct. 16(6), 1669 (2020)

    Article  Google Scholar 

  14. M G Reddy, R N Kumar, B C Prasannakumara, N G Rudraswamy and K G Kumar, Commun. Theor. Phys. 73, 045002 (2021)

    Article  ADS  Google Scholar 

  15. M I Khan, S Qayyum, S Farooq, T Hayat and A Alsaed, Pramana J. Phys. 93, 62 (2019)

  16. C Cattaneo, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia. 3, 83 (1948)

    Google Scholar 

  17. C I Christov, Mech. Res. Commun. 36, 481 (2009)

    Article  Google Scholar 

  18. T Hayat and T Ayub, J. Mol. Liq. 234, 9 (2017)

    Article  Google Scholar 

  19. M G Reddy, M V V N L S Rani, K G Kumar, B C Prasannakumara and A J Chamkha, Physica A 548, 123991 (2020)

    Article  MathSciNet  Google Scholar 

  20. Y Bai, Q Wang and Y Zhang, Int. J. Numer. Methods Heat Fluid Flow (2021), https://doi.org/10.1108/HFF-10-2020-0664

  21. B Kumar, G S Seth and R Nandkeolyar, Pramana – J. Phys. 93, 74 (2019)

    Article  ADS  Google Scholar 

  22. Y Bai, B Xie, Y Zhang, Y J Cao and Y P Shen, Int. J. Numer. Methods Heat Fluid Flow 29, 1039 (2019)

    Article  Google Scholar 

  23. A Malvandi, F Hedayati and D D Ganji, Powder Technol. 253, 377 (2014)

    Article  Google Scholar 

  24. T Hayat, S Qayyum, M Waqas and A Alsaedi, J. Braz. Soc. Mech. Sci. Eng. 40, 84 (2018)

    Article  Google Scholar 

  25. A K Pandey, S Rajput, K Bhattacharyya and P Sibanda, Pramana J. Phys. 95, 5 (2021)

  26. C H Chen, J. Non-Newtonian Fluid Mech. 135, 128 (2006)

    Article  Google Scholar 

  27. R Cortell, Meccanica 47, 769 (2012)

    Article  MathSciNet  Google Scholar 

  28. P Besthapu, R U Haq, S Bandari and Q M A Mdallal, J. Taiwan Inst. Chem. Eng. 71, 307 (2016)

    Article  Google Scholar 

  29. K G Kumar, H J Lokesh, S A Shehzad and T Ambreen, J. Therm. Anal. Calorim. 139, 2119 (2020)

    Article  Google Scholar 

  30. S I Abdelsalam and M Sohail, Pramana J. Phys. 94, 67 (2020)

  31. Y Zhang and L C Zheng, Chem. Eng. Sci. 69, 449 (2012)

    Article  Google Scholar 

  32. X H Su, L C Zheng and X X Zhang, Appl. Math. Mech. 33(12) 1555 (2012)

    Article  MathSciNet  Google Scholar 

  33. Y Zhang, B Yuan, Y Bai, Y J Cao and Y P Shen, Powder Technol. 338, 975 (2018)

    Article  Google Scholar 

  34. Y Zhang, M Zhang and Y Bai, J. Taiwan Inst. Chem. Eng. 70, 104 (2017)

    Article  Google Scholar 

  35. A M Megahed, Chin. Phys. B 22, 484 (2013).

    Article  Google Scholar 

  36. Y Mehmood, M Sagheer and S Hussain, Neural. Comput. Appl. 30, 2979 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research Program of China (No. 2016YFC0700601), the National Natural Science Foundation of China (No. 21878018), the Joint Funding Project of Beijing Municipal Natural Science Foundation and Beijing Municipal Education Commission (No. KZ201810016018), the BUCEA Post Graduate Innovation Project (2020) (No. PG2020096, No. PG2020097) and the Fundamental Research Funds for Beijing University of Civil Engineering and Architecture (X20142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Fang, H. & Zhang, Y. Investigation of CuO, Al\(_{{2}}\)O\(_{{3}}\) and Ag nanomaterials on unsteady stagnation point flow of Oldroyd-B–power-law nanofluid with viscous dissipation. Pramana - J Phys 96, 61 (2022). https://doi.org/10.1007/s12043-021-02282-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02282-y

Keywords

PACS Nos

Navigation