Skip to main content
Log in

Rheological effects of biomimetic propulsion on fluid flow: An application of bio-engineering

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In the current article, we have studied few rheological phenomena related to the fluid transportation in various forms of flow geometries and motion of the fluid based upon the peristaltic propulsions of the boundary walls. This study is productive for mechanical engineers to design devices that are used as a remedy of complex cardiovascular treatments. This study deals with the flow of a viscous fluid through the complex paths due to the biomimetic propulsions of the boundary walls of geometries. Firstly, due to the complex nature of flow regimes, the continuity and momentum equations are governed into the form of curvilinear coordinates. Secondly, the governing equations are transformed from the laboratory frame to the wave frame by introducing a linear mathematical relation between these two frames. Thirdly, similarity transformations are utilized to convert the system of equations into the dimensionless form and at the last, these equations will reduce into the four ODEs in terms of stream function after using long wavelength approximation. The analytical solution of the governing equation is acquired by applying integration rules and mathematical values of integrating constants are obtained by using Mathematica 10 software. The significant impacts of physical parameters such as curvature parameter and non-uniform parameter in the velocity profile, pumping and trapping phenomena’s are argued expansively through graphs to the various forms of flow regimes. Physical characteristics of simple wavy walls and complex wavy walls of the curved channels are also highlighted in detail in the wave frame of reference. Moreover, a comparison among the straight channel and the curved channel is also emphasized. The results of the current study may be useful in designing the complex instruments which are used in medical engineering and treatment of physiological systems. Comprehensive information about the transportation of bio-fluids in the uniform as well as non-uniform vessels or arteries is obtained from the present study. This study provides dynamic information, to the mechanical engineers, to enhance the performance of the peristaltic micro-pumps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Acheson, Elementary Fluid Dynamics (Oxford University Press, Oxford, 1990)

  2. J. Lighthill, Mathematical Bio Fluid Dynamics (SIAM, Philadelphia, 1975)

  3. J. Lighthill, Waves in Fluids (Cambridge University Press, Cambridge, 1980)

  4. J. West, Respiratory Physiology: The Essentials (Williams & Wilkins, Baltimore, 1985)

  5. J. Blazek, Computational Fluid Dynamics: Principles and Applications, 2nd Ed. (Elsevier, New York, 2005)

    Google Scholar 

  6. A.L. Chorin, A Mathematical Introduction to Fluid Mechanics, 3rd Ed. (Springer, New York, 1993)

    MATH  Google Scholar 

  7. R. Darby, Chemical Engineering Fluid Mechanics, 2nd Ed. (Marcel Dekker, New York, 2001)

  8. E. Feireisl, Dynamics of Viscous Compressible Fluids (Oxford University Press, New York, 2004)

  9. T.W. Latham, Fluid Motion in a Peristaltic Pump, MS thesis, MIT, Cambridge (1966)

  10. J.C. Burns, T. Parkes, J. Fluid Mech. 29, 731 (1967)

    ADS  Google Scholar 

  11. A.H. Shapiro, M.Y. Jaffrin, S.L. Weinberg, J. Fluid Mech. 37, 799 (1969)

    ADS  Google Scholar 

  12. W.M. Bayliss, E.H. Starling, J. Physiol. 24, 99 (1899)

    Google Scholar 

  13. Y.C. Fung, C.S. Yih, J. Appl. Mech. 35, 669 (1968)

    ADS  Google Scholar 

  14. F. Yin, Y.C. Fung, J. Appl. Mech. 36, 579 (1969)

    ADS  Google Scholar 

  15. S. Takabatake, K. Ayukawa, J. Fluid Mech. 122, 439 (1982)

    ADS  Google Scholar 

  16. S. Takabatake, K. Ayukawa, A. Mori, J. Fluid Mech. 193, 269 (1988)

    ADS  Google Scholar 

  17. N. Ali, Y. Wang, T. Hayat, M. Oberlack, Can. J. Phys. 87, 1047 (2009)

    ADS  Google Scholar 

  18. T.D. Brown, T.K. Hung, J. Fluid Mech. 83, 249 (1977)

    ADS  Google Scholar 

  19. T.K. Hung, T.D. Brown, J. Fluid Mech. 73, 77 (1976)

    ADS  Google Scholar 

  20. T. Hayat, N. Ali, Appl. Math. Mod. 32, 761 (2008)

    Google Scholar 

  21. S. Srinivas, R. Gayathri, Appl. Math. Comput. 215, 185 (2009)

    MathSciNet  Google Scholar 

  22. K.S. Mekheimer, Y. Abd Elmaboud, Physica A 372, 1657 (2008)

    Google Scholar 

  23. A. Ebaid, Phys. Lett. A 372, 4493 (2008)

    ADS  Google Scholar 

  24. K.K. Raju, R. Devanathan, Rheol. Acta 13, 944 (1974)

    Google Scholar 

  25. N. Ali, Y. Wang, T. Hayat, M. Oberlack, Biorheology 45, 611 (2008)

    Google Scholar 

  26. N. Ali, Y. Wang, T. Hayat, M. Oberlack, Can. J. Phys. 87, 1047 (2009)

    ADS  Google Scholar 

  27. N. Ali, T. Javed, Z. Naturforsch. 68a, 515 (2013)

    ADS  Google Scholar 

  28. W.R. Dean, Phil. Mag. 4, 208 (1927)

    Google Scholar 

  29. W.R. Dean, Phil. Mag. 5, 673 (1928)

    Google Scholar 

  30. H. Sato, T. Kawai, T. Fujita, M. Okabe, Trans. Jpn. Soc. Mech. Eng. B 66, 679 (2000)

    Google Scholar 

  31. N. Ali, M. Sajid, T. Hayat, Z. Naturforsch. A 65a, 191 (2010)

    ADS  Google Scholar 

  32. N. Ali, M. Sajid, T. Javed, Z. Abbas, Int. J. Heat Mass Transfer 53, 3319 (2010)

    Google Scholar 

  33. N. Ali, K. Javid, M. Sajid, O.A. Beg, Comput. Methods Biomech. Biomed. Eng. 19, 614 (2016)

    Google Scholar 

  34. S. Hina, T. Hayat, A. Alsaedi, Int. J. Heat Mass Transfer 55, 351 (2012)

    Google Scholar 

  35. S. Hina, M. Mustafa, T. Hayat, A. Alsaedi, ASME J. Appl. Mech. 80, 024501 (2013)

    ADS  Google Scholar 

  36. T. Hayat, S. Hina, A.A. Hendi, S. Asghar, Int. J. Heat Mass Transfer 54, 5126 (2011)

    Google Scholar 

  37. V.K. Narla, K.M. Prasad, J.V. Ramanamurthy, Chin. J. Eng. 2013, 582390 (2013)

    Google Scholar 

  38. J.V. Ramanamurthy, K.M. Prasad, V.K. Narla, Phys. Fluids 25, 091903 (2013)

    ADS  Google Scholar 

  39. A. Kalantari, K. Sadeghy, S. Sadeqi, Ann. Trans. Nordic Rheol. Soc. 21, 11155 (2013)

    Google Scholar 

  40. N. Ali, K. Javid, M. Sajid, A. Zaman, T. Hayat, Int. J. Heat Mass Transfer 94, 500 (2016)

    Google Scholar 

  41. N. Ali, M. Sajid, Z. Abbas, T. Javed, Eur. J. Mech.-B/Fluids 29, 387 (2010)

    ADS  MathSciNet  Google Scholar 

  42. A.M. Sobh, H.H. Mady, J. Appl. Sci. 8, 1085 (2008)

    ADS  Google Scholar 

  43. Kh.S. Mekheimer, Arab. J. Sci. Eng. 54, 532 (2005)

    Google Scholar 

  44. M. Mishra, A.R. Rao, Z. Angew. Math. Phys. 54, 532 (2003)

    MathSciNet  Google Scholar 

  45. E.F. Elshehawey, E.M. Elghazy, A. Ebaid, Appl. Math. Comput. 182, 140 (2006)

    MathSciNet  Google Scholar 

  46. D. Tripathi, A. Yadav, O. Anwar Beg, R. Kumar, Microvasc. Res. 117, 28 (2018)

    Google Scholar 

  47. Kh.S. Mekheimer, Appl. Math. Comput. 153, 763 (2004)

    MathSciNet  Google Scholar 

  48. S. Noreen, Biomater. Med. Appl. 1, 1 (2017)

    Google Scholar 

  49. T.F. Zien, S. Ostrach, J. Biomech. 3, 63 (1970)

    Google Scholar 

  50. M.J. Manton, Fluid Mech. 68, 467 (1975)

    ADS  Google Scholar 

  51. T. El-Bashir, Fluid Flow at Small Reynolds Number: Numerical Applications (Hikari, 2006)

  52. M.Y. Jaffrin, A.H. Shapiro, Annu. Rev. Fluid Mech. 3, 13 (1971)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Imran Asjad.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javid, K., Hassan, M., Imran Asjad, M. et al. Rheological effects of biomimetic propulsion on fluid flow: An application of bio-engineering. Eur. Phys. J. Plus 134, 522 (2019). https://doi.org/10.1140/epjp/i2019-12801-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12801-1

Navigation