Skip to main content
Log in

Effects of magnetic wiggler field and chirped laser pulse on the wakefield amplitude and electron energy gain in a wiggler-assisted laser wakefield accelerator

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Wakefield generation and GeV electron acceleration in a plasma medium by an ultra-short and intense chirped laser pulse in the presence of a magnetic wiggler field are presented. To increase the wakefield amplitude and to maximize the acceleration gradient, we employ a helical magnetostatic wiggler. An analytical theory of wakefield generation and electron energy gain has been presented which includes the effects of the wiggler field. It was found that the wakefield spectrum and electron energy gain in the wiggler-assisted wakefield accelerator can be increased significantly compared to the non-wiggler situation ones. Numerical simulations reveal that for moderate wiggler magnetic field strengths, wakefield amplitude and electron energy gain have significant peaks in bubble-like structures. Besides, when the wiggler wavelength is clearly larger than the plasma wavelength, the wakefield amplitude and electron energy gain significantly enhance. In addition, it was found that the electron bunches can be enhanced by increasing the wiggler field strength or wiggler wavelength. The effect of the laser chirp parameter on wakefield and electron energy gain have also been investigated. It was concluded that in a wiggler-assisted laser wakefield accelerator, the electron energy and wakefield evolution can be tuned by the wiggler field strength, wiggler wavelength, and laser chirp parameter. This concept opens a path toward new generation of plasma accelerators based on wiggler structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Gauthier, E. Allaria, M. Coreno, I. Cudin, H. Dacasa, M.B. Danailov, A. Demidovich, S. Di Mitri, B. Diviacco, E. Ferrari, P. Finneti, Nat. Commun. 7, 13688 (2016)

    Article  ADS  Google Scholar 

  2. X. Yang, G. Vieux, E. Brunetti, B. Ersfeld, J.P. Farmer, R.C. Issac, G. Raj, S.M. Wiggins, G.H. Welsh, S.R. Yoffe, Sci. Rep. 5, 13333 (2015)

    Article  ADS  Google Scholar 

  3. J. Cowley, C. Thornton, C. Arran, R.J. Shalloo, L. Corner, G. Cheung, C.D. Gregory, Phys. Rev. Lett. 119, 044802 (2017)

    Article  ADS  Google Scholar 

  4. T.Z. Zhao, K. Behm, Z.H. He, A. Maksimchuk, J.A. Nees, V. Yanovsky, A.G.R. Thomas, K. Krushelnick, Plasma Phys. Control. Fusion 58, 105003 (2016)

    Article  ADS  Google Scholar 

  5. M. Litos, E. Adli, W. An, C.I. Clarke, C.E. Clayton, Sébastien Corde, J.P. Delahaye, R.J. England, A.S. Fisher, J. Frederico, S. Gessner, Nature 515, 92 (2014)

    Article  ADS  Google Scholar 

  6. T. Baeva, S. Gordienko, A. Pukhov, Phys. Rev. E 74, 046404 (2006)

    Article  ADS  Google Scholar 

  7. S. Jafari, M. Nilkar, A. Ghasemizad, H. Mehdian, Phys. Plasmas 21, 104503 (2014)

    Article  ADS  Google Scholar 

  8. S.M. Hooker, Nat. Photon. 7, 775 (2013)

    Article  ADS  Google Scholar 

  9. E. Esarey, C.B. Schroeder, W.P. Leemans, Rev. Mod. Phys. 81, 1229 (2009)

    Article  ADS  Google Scholar 

  10. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, V. Malka, Nature 444, 737 (2006)

    Article  ADS  Google Scholar 

  11. F. Albert, A.G.R. Thomas, Plasma Phys. Controll. Fusion 58, 10300 (2016)

    Article  Google Scholar 

  12. H.C. Wu, Z.M. Sheng, Q.L. Dong, H. Xu, J. Zhang, Phys. Rev. E 75, 016407 (2007)

    Article  ADS  Google Scholar 

  13. V. Malka, Phys. Plasmas 19, 055501 (2012)

    Article  ADS  Google Scholar 

  14. P. Jha, R.K. Mishra, G. Raj, A.K. Upadhyay, Phys. Plasmas 14, 053107 (2007)

    Article  ADS  Google Scholar 

  15. N. Saedjalil, S. Jafari, High Energy Dens. Phys. 19, 48 (2016)

    Article  ADS  Google Scholar 

  16. H. Mehdian, A. Kargarian, K. Hajisharifi, Phys. Plasmas 22, 063102 (2015)

    Article  ADS  Google Scholar 

  17. M. Abedi-Varaki, S. Jafari, J. Opt. Soc. Am. B 35, 1165 (2018)

    Article  ADS  Google Scholar 

  18. T. Katsouleas, J.M. Dawson, Phys. Rev. Lett. 51, 392 (1983)

    Article  ADS  Google Scholar 

  19. V.A. Balakirev, V.D. Levchenko, Laser Part. Beams 19, 597 (2001)

    Article  ADS  Google Scholar 

  20. A. Holkundkar, G. Brodin, M. Marklund, Phys. Rev. E 84, 036409 (2011)

    Article  ADS  Google Scholar 

  21. K.P. Singh, V.L. Gupta, L. Bhasin, V.K. Tripath, Phys. Plasmas 10, 1493 (2003)

    Article  ADS  Google Scholar 

  22. R. Prasad, R. Singh, V.K. Tripathi, Laser Part. Beams 27, 459 (2009)

    Article  ADS  Google Scholar 

  23. P. Jha, A. Saroch, R.K. Mishra, A.K. Upadhyay, Phys. Rev. ST Accel. Beams 15, 081301 (2012)

    Article  ADS  Google Scholar 

  24. V. Petrillo, C. Maroli, Phys. Plasmas 3, 1773–1775 (1996)

    Article  ADS  Google Scholar 

  25. C. Maroli, V. Petrillo, R. Bonifacio, Phys. Rev. Lett. 76, 3578 (1996)

    Article  ADS  Google Scholar 

  26. A.G. Khachatryan, F.A. van Goor, K.J. Boller, Phys. Rev. E 70, 067601 (2004)

    Article  ADS  Google Scholar 

  27. A.G. Khachatryan, F.A. Van Goor, J.W. Verschuur, K.J. Boller, Phys. Plasmas 12, 062116 (2005)

    Article  ADS  Google Scholar 

  28. P.A. Walker, P.D. Alesini, A.S. Alexandrova, Maria Pia Anania, N.E. Andreev, I. Andriyash, A. Aschikhin et al., J. Phys. Conf. Ser. 874, 012029 (2017)

    Article  Google Scholar 

  29. A.G.R. Thomas, Z. Najmudin, S.P.D. Mangles, C.D. Murphy, A.E. Dangor, C. Kamperidis, K.L. Lancaster, Phys. Rev. Lett. 98, 095004 (2007)

    Article  ADS  Google Scholar 

  30. M.C. Kaluza, H.P. Schlenvoigt, S.P.D. Mangles, A.G.R. Thomas, A.E. Dangor, H. Schwoerer, W.B. Mori, Z. Najmudin, K.M. Krushelnick, Phys. Rev. Lett. 105, 115002 (2010)

    Article  ADS  Google Scholar 

  31. B.S. Sharma, A. Jain, N.K. Jaiman, D.N. Gupta, D.G. Jang, H. Suk, V.V. Kulagin, Phys. Plasmas 21, 023108 (2014)

    Article  ADS  Google Scholar 

  32. J.E. Ralph, K.A. Marsh, A.E. Pak, W. Lu, C.E. Clayton, F. Fang, W.B. Mori, C. Joshi, Phys. Rev. Lett. 102, 175003 (2009)

    Article  ADS  Google Scholar 

  33. M. Abedi-Varaki, S. Jafari, Phys. Plasmas 24, 082309 (2017)

    Article  ADS  Google Scholar 

  34. S. Jafari, Laser Phys. Lett. 12, 075002 (2015)

    Article  ADS  Google Scholar 

  35. H. Shirvani, S. Jafari, J. Synchrotron Radiat. 25, 316 (2018)

    Article  Google Scholar 

  36. E. Abbasi, S. Jafari, R. Hedayati, J. Synchrotron Radiat. 23, 1282 (2016)

    Article  Google Scholar 

  37. N. Esmaeildoost, S.H. Zolghadr, S. Jafari, J. Appl. Phys. 121, 113106 (2017)

    Article  ADS  Google Scholar 

  38. E. Yazdani, R. Sadighi-Bonabi, H. Afarideh, Z. Riazi, H. Hora, J. Appl. Phys. 116, 103302 (2014)

    Article  ADS  Google Scholar 

  39. M. Rezaei-Pandari, A.R. Niknam, R. Massudi, F. Jahangiri, H. Hassaninejad, Phys. Plasmas 24, 023112 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dezhpour, A., Jafari, S. & Mehdian, H. Effects of magnetic wiggler field and chirped laser pulse on the wakefield amplitude and electron energy gain in a wiggler-assisted laser wakefield accelerator. Eur. Phys. J. Plus 133, 473 (2018). https://doi.org/10.1140/epjp/i2018-12281-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12281-9

Navigation