Skip to main content
Log in

Entropy generation analysis as design criteria in dam-break flows for non-Newtonian fluids

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In the present study, a novel equation is presented for entropy generation (EG) in dam-break flows of Herschel-Bulkley fluids. The Herschel-Bulkley model is an idealized model of viscoplastic behavior. The dam-break phenomena can cause floods and widespread destruction in the path of the flow. Therefore, finding a measure for destruction analysis in downstream of the dam is important. Therefore, the EG is introduced as a criterion of destruction analysis in non-Newtonian dam-break flows. The Open-FOAM software is employed and simulations are done by the modified VOF method. Results are compared with experimental data, and a good agreement is achieved. The EG analysis of the Herschel-Bulkley fluid is presented for the first time. It is computed for different initial height (H0), and the results show that the enhancement of H0 causes the increment of EG. And, also, for an increment of EG, different shapes of bump are simulated and the geometry and bump distance from the dam are optimized. As a result, the triangle bump with \( r_{hw}=0.4\), \( r_{Dw}=0.2\), and \( r_{dw}=0.2\) has the best performance in increasing the EG. Focusing on the destruction of the available work in the dam-break flows of Herschel-Bulkley fluids is important and useful for designing dams and structures in the downstream of dams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Ancey, N.J. Balmforth, I. Frigaard, Visco-plastic Fluids: From Theory to Application (Elsevier, 2009)

  2. P. Saramito, J. Non-Newtonian Fluid Mech. 158, 154 (2009)

    Article  Google Scholar 

  3. D. Tripathi, A. Yadav, O.A. Bég, Eur. Phys. J. Plus 132, 173 (2017)

    Article  Google Scholar 

  4. R.B. Minussi, G.D. Maciel, J. Braz. Soc. Mech. Sci. Eng. 34, 167 (2012)

    Article  Google Scholar 

  5. M. Scholle, A. Haas, N. Aksel, M.C. Wilson, H.M. Thompson, P.H. Gaskell, Phys. Fluids 20, 123101 (2008)

    Article  ADS  Google Scholar 

  6. A. Shakibaeinia, Y.C. Jin, Adv. Water Resour. 34, 794 (2011)

    Article  ADS  Google Scholar 

  7. S. Soares-Frazão, J. Hydraul. Res. 45, 19 (2007)

    Article  Google Scholar 

  8. J.G. Zhou, D.M. Causon, C.G. Mingham, D.M. Ingram, J. Hydraul. Eng. 130, 332 (2004)

    Article  Google Scholar 

  9. G. Matson, A. Hogg, J. Non-Newtonian Fluid Mech. 142, 79 (2007)

    Article  Google Scholar 

  10. S. Longo, L. Chiapponi, V. Di Federico, J. Non-Newtonian Fluid Mech. 235, 95 (2016)

    Article  MathSciNet  Google Scholar 

  11. S. Cochard, C. Ancey, J. Non-Newtonian Fluid Mech. 158, 73 (2009)

    Article  Google Scholar 

  12. C. Ancey, N. Andreini, G. Epely-Chauvin, Adv. Water Resour. 48, 79 (2012)

    Article  ADS  Google Scholar 

  13. C. Ancey, S. Cochard, J. Non-Newtonian Fluid Mech. 158, 18 (2009)

    Article  Google Scholar 

  14. N.J. Balmforth, R.V. Craster, A.C. Rust, R. Sassi, J. Non-Newtonian Fluid Mech. 139, 103 (2006)

    Article  Google Scholar 

  15. N. Balmforth, J. Liu, J. Fluid Mech. 519, 33 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  16. P. Saramito, A. Wachs, Rheol. Acta 56, 211 (2017)

    Article  Google Scholar 

  17. Y. Liu, N. Balmforth, S. Hormozi, D. Hewitt, J. Non-Newtonian Fluid Mech. 238, 65 (2016)

    Article  MathSciNet  Google Scholar 

  18. S. Shao, E.Y. Lo, Adv. Water Resour. 26, 787 (2003)

    Article  ADS  Google Scholar 

  19. M. Labbé, D. Laigle, Comput. Methods Multiphase Flow VII 79, 399 (2013)

    Article  Google Scholar 

  20. S. Shao, E.Y. Lo, Adv. Water Resour. 26, 787 (2003)

    Article  ADS  Google Scholar 

  21. E.H. Zubeldia, G. Fourtakas, B.D. Rogers, M.M. Farias, Adv. Water Resour. 117, 98 (2018)

    Article  ADS  Google Scholar 

  22. G. Fourtakas, B.D. Rogers, Adv. Water Resour. 92, 186 (2016)

    Article  ADS  Google Scholar 

  23. Marsooli, Reza, Wu Weiming, Adv. Water Resour. 70, 104 (2014)

    Article  ADS  Google Scholar 

  24. M. Jabbari, R. Bulatova, J.H. Hattel, C.R. Bahl, Appl. Math. Modell. 38, 3222 (2014)

    Article  Google Scholar 

  25. C.W. Hirt, B.D. Nichols, J. Comput. Phys. 39, 201 (1981)

    Article  ADS  Google Scholar 

  26. C. Mokrani, S. Abadie, J. Fluids Struct. 62, 86 (2016)

    Article  ADS  Google Scholar 

  27. M. Furuya, Y. Oka, M. Satoh, S. Lo, T. Arai, Heat Transf. XIII 83, 363 (2014)

    Google Scholar 

  28. S.S. Deshpande, L. Anumolu, M.F. Trujillo, Comput. Sci. Discov. 5, 014016 (2012)

    Article  Google Scholar 

  29. O. Ubbink, Numerical prediction of two fluid systems with sharp interfaces, PhD Thesis, University of London (1997)

  30. O. Ubbink, R. Issa, J. Comput. Phys. 153, 26 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  31. H. Weller, Derivation, modelling and solution of the conditionally averaged two-phase flow equations, Technical Report No TR/HGW (Nabla Ltd., 2002)

  32. A. Bejan, J. Heat Transf. 101, 718 (1979)

    Article  Google Scholar 

  33. B.S. Yilbas, M. Yürüsoy, M. Pakdemirli, Entropy 6, 304 (2004)

    Article  ADS  Google Scholar 

  34. Y.-M. Hung, Int. Commun. Heat Mass Transf. 35, 1125 (2008)

    Article  Google Scholar 

  35. F.A. Soomro, Z.H. Khan, Q. Zhang, Eur. Phys. J. Plus 132, 412 (2017)

    Article  Google Scholar 

  36. M.I. Khan, T.A. Khan, S. Qayyum, T. Hayat, M.I. Khan, A. Alsaedi, Eur. Phys. J. Plus 133, 329 (2018)

    Article  Google Scholar 

  37. M. Mirzaee, E. Lakzian, Adv. Powder Technol. 28, 3172 (2017)

    Article  Google Scholar 

  38. E. Lakzian, A. Masjedi, Int. J. Exergy 14, 22 (2014)

    Article  Google Scholar 

  39. E. Lakzian, A. Shabani, Int. J. Exergy 4, 383 (2015)

    Article  Google Scholar 

  40. M. Vatanmakan, E. Lakzian, M.R. Mahpeykar, Energy 147, 701 (2018)

    Article  Google Scholar 

  41. A. Lotfi, E. Lakzian, Eur. Phys. J. Plus 131, 123 (2016)

    Article  Google Scholar 

  42. R. Soltanmohammadi, E. Lakzian, Meccanica 51, 1713 (2016)

    Article  Google Scholar 

  43. E. Lakzian, R. Soltanmohammadi, M. Nazeryan, Sci. Iran. B 23, 2673 (2016)

    Google Scholar 

  44. R. Nazeryan, E. Lakzian, Energy 143, 385 (2018)

    Article  Google Scholar 

  45. Z.A. Raizah, A.M. Aly, S.E. Ahmed, Int. J. Mech. Sci. 140, 376 (2018)

    Article  Google Scholar 

  46. E. Lakzian, M. Hajian, A. Farahmand, Meccanica (2017), https://doi.org/10.1007/s11012-017-0706-1

  47. H. Saghi, E. Lakzian, Energy 128, 564 (2017)

    Article  Google Scholar 

  48. H. Saghi, Physica A 491, 972 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  49. J. Brackbill, D.B. Kothe, C. Zemach, J. Comput. Phys. 100, 335 (1992)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmail Lakzian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakzian, E., Estiri, A. Entropy generation analysis as design criteria in dam-break flows for non-Newtonian fluids. Eur. Phys. J. Plus 133, 454 (2018). https://doi.org/10.1140/epjp/i2018-12259-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12259-7

Navigation