Skip to main content
Log in

Numerical investigation of the onset of axisymmetric and wavy Taylor-Couette flows between combinations of cylinders and spherocylinders

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The Taylor-Couette flow, which is the flow that occurs between two rotating bodies, has become fundamental to the study of instability and nonlinear behaviour. Many modifications can be made to the Taylor-Couette flow resulting in much more complex flow structures, either by geometrical changes, or by combining different geometries. The main goal of this work is to numerically investigate the effect of the cylinders-spheres combinations on the onset of different instabilities of a fluid confined between two concentric bodies. The modelling strategy was developed by studying three types of flow configurations: cylindrical Taylor-Couette flow (with fixed endcaps), flow between two concentric cylinders with hemispheres on the lower end wall, and flow between two coaxial spherocylinders (cylinders with hemispheres on the upper and lower end surfaces). The inner element rotates while the outer one is at rest. The numerical calculations were carried out to determine the transition zone from a laminar Couette flow to the onset of Taylor vortices and wavy vortex flow. The parameter that determines the flow regimes is the Reynolds number based on the angular velocity of the inner element. The fluid dynamic behaviours for different flow configurations are characterized by the wall shear stress and the skin friction coefficient. Laminar, axisymmetric and wavy Taylor-Couette flows are predicted for different configurations. It is established that the different combinations deeply affect the flow behaviour and the appearance of the instabilities. The transition from LCF to TVF and then to WVF in the combined flow systems is substantially retarded compared to the cylindrical Taylor-Couette flow system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mallock, Philos. Trans. R. Soc. London A 187, 41 (1896)

    Article  ADS  Google Scholar 

  2. M. Couette, Ann. Chim. Phys. 6, 433 (1890)

    Google Scholar 

  3. L. Rayleigh, Proc. R. Soc. London A 93, 148 (1916)

    Article  ADS  Google Scholar 

  4. G.l. Taylor, Philos. Trans. R. Soc. London A 223, 289 (1923)

    Article  ADS  Google Scholar 

  5. D. Coles, J. Fluid Mech. 21, 385 (1965)

    Article  ADS  Google Scholar 

  6. S. Chandrasekhar, Proc. Natl. Acad. Sci. 46, 141 (1960)

    Article  ADS  Google Scholar 

  7. P.R. Fenstermacher, H.L. Swinney, J.P. Gollub, J. Fluid Mech. 94, 103 (1979)

    Article  ADS  Google Scholar 

  8. R.C. Diprima, H.L. Swinney, Instabilities and transition in flow between concentric rotating cylinders, in Hydrodynamic Instabilities and the Transition to Turbulence, Topics in Applied Physics, Springer, Vol. 45 (Springer, 1981) pp. 139--180

  9. R.J. Donnelly, Phys. Today 44, 32 (1991)

    Article  Google Scholar 

  10. P.S. Marcus, J. Fluid Mech. 146, 45 (1984)

    Article  ADS  Google Scholar 

  11. E.L. Koschmieder, Benard cells and Taylor vortices (Cambridge University, NewYork, 1993)

  12. O. Czarny, E. Serre, P. Bontoux, R.M. Lueptow, Phys. Fluids 15, 467 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  13. K. Avila, B. Hof, Rev. Sci. Instrum. 84, 065106 (2013)

    Article  ADS  Google Scholar 

  14. B. Martinez-Arias, J. Peixinho, O. Crumeyrolle, I. Mutabazi, J. Fluid Mech. 748, 756 (2014)

    Article  ADS  Google Scholar 

  15. E. Adnane, A. Lalaoua, A. Bouabdallah, J. Appl. Fluid Mech. 9, 1097 (2016)

    Article  Google Scholar 

  16. Duccio Griffini, Massimiliano Insinna, Simone Salvadori, Andrea Barucci, Franco Cosi, Stefano Pelli, Giancarlo C. Righini, Fluids 2, 8 (2017)

    Article  Google Scholar 

  17. A. Froitzheim, S. Merbold, C. Egbers, J. Fluid Mech. 831, 330 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. H.J. Brauckmann, M. Salewsky, B. Eckhardt, J. Fluid Mech. 790, 419 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Chouippe, E. Climent, D. Legendre, C. Gabillet, Phys. Fluids 26, 043304 (2014)

    Article  ADS  Google Scholar 

  20. S. Grossmann, D. Lohse, C. Sun, Annu. Rev. Fluid Mech. 48, 53 (2016)

    Article  ADS  Google Scholar 

  21. A. Lalaoua, Eur. Phys. J. Appl. Phys. 77, 11101 (2017)

    Article  ADS  Google Scholar 

  22. T. Mullin, M. Heise, G. Pfister, Phys. Rev. Fluids 2, 081901(R) (2017)

    Article  ADS  Google Scholar 

  23. G.N. Khlebutin, Fluid Dyn. 3, 31 (1968)

    Article  ADS  Google Scholar 

  24. I.M. Yavorskaya, Yu.N. Belyaev, A.A. Monakhov, Dokl. Akad. Nauk. SSSR 237, 804 (1977)

    ADS  Google Scholar 

  25. K. Nakabavashi, ASME J. Fluids Eng. 100, 97 (1978)

    Article  Google Scholar 

  26. P.S. Marcus, L.S. Tuckerman, J. Fluid Mech. 185, 1 (1987)

    Article  ADS  Google Scholar 

  27. P.S. Marcus, L.S. Tuckerman, J. Fluid Mech. 185, 31 (1987)

    Article  ADS  Google Scholar 

  28. K. Bühler, Acta Mech. 81, 3 (1990)

    Article  MathSciNet  Google Scholar 

  29. C. Egbers, H.J. Rath, Acta Mech. 111, 125 (1995)

    Article  Google Scholar 

  30. R. Hollerbach, Phys. Rev. Lett. 81, 3132 (1998)

    Article  ADS  Google Scholar 

  31. C. Peralta, A. Melatos, M. Giacobello, A. Ooi, J. Fluid Mech. 609, 221 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  32. K. Bühler, J. Therm. Sci. 18, 109 (2009)

    Article  ADS  Google Scholar 

  33. Li. Yuan, Phys. Fluids 24, 124104 (2012)

    Article  ADS  Google Scholar 

  34. D.Yu. Zhilenko, O.E. Krivonosova, Fluid Dyn. 48, 452 (2013)

    Article  ADS  Google Scholar 

  35. A. Lalaoua, A. Bouabdallah, ASME J. Fluids Eng. 138, 111201 (2016)

    Article  Google Scholar 

  36. M. Wimmer, Prog. Aerospace Sci. 25, 43 (1988)

    Article  ADS  Google Scholar 

  37. M. Wimmer, Z. Angew. Math. Mech. 69, 616 (1989)

    Google Scholar 

  38. M. Wimmer: Vortex patterns between cones and cylinders, in Ordered and turbulent patterns in Taylor-Couette flow, edited by C.D. Andereck, F. Hayot, in NATO ASI Series B. Physics, Vol. 297 (Plenum Press N. Y., 1992) pp. 205--211

  39. M. Abboud, Z. Angew. Math. Mech. 70, T441 (1990)

    Google Scholar 

  40. L. Ning, G. Ahlers, D.S. Cannel, Phys. Rev. Lett. 64, 1235 (1990)

    Article  ADS  Google Scholar 

  41. B. Denne, M. Wimmer, Acta Mech. 133, 69 (1999)

    Article  Google Scholar 

  42. M.A. Sprague, P.D. Weidman, S. Macumber, P.F. Fischer, Phys. Fluids 20, 014102 (2008)

    Article  ADS  Google Scholar 

  43. M. Wimmer: Taylor vortices at different geometries, in Phys. Rotating Fluids, edited by C. Egbers, G. Pfister (Springer, New York, 2000) pp. 194--212

    Chapter  Google Scholar 

  44. J. Parker, P. Merati, Trans. ASME 118, 810 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lalaoua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalaoua, A., Naït Bouda, F. Numerical investigation of the onset of axisymmetric and wavy Taylor-Couette flows between combinations of cylinders and spherocylinders. Eur. Phys. J. Plus 133, 383 (2018). https://doi.org/10.1140/epjp/i2018-12240-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12240-6

Navigation