Skip to main content
Log in

Comparative study of Eyring and Carreau fluids in a suspension of dust and nickel nanoparticles with variable conductivity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

A theoretical analysis is carried out to investigate the magnetohydrodynamic unsteady flow of Eyring-Powell and Carreau non-Newtonian fluids in a suspension of dust and nickel nanoparticles by considering variable thermal conductivity and thermal radiation. Dispersion of nickel nanoparticles in dusty fluids finds applications in heat exchanger systems, rechargeable batteries, chemical catalysts, metallurgy, conducting paints, magnetic recording media, drug delivery, nanofibers, textiles, etc. The initially arising set of physical governing partial differential equations is transformed to ordinary differential equations (ODEs) with the aid of similarity transformations. Consequentially, the nonlinear ODEs are solved numerically through the Runge-Kutta Fehlberg scheme (RKFS). The computational results for non-dimensional temperature and velocity profiles are presented through graphs. Furthermore, the numerical values of friction factor and heat transfer rate are tabulated numerically for the unsteady and steady cases of the Eyring and Carreau fluid cases and of the dusty non-Newtonian (\(\phi=0\)) and the dusty non-Newtonian nanofluid (\(\phi\neq 0\)) cases of the unsteady flow. We also validated the present results with previous published studies and found them to be highly satisfactory. The formulated model reveals that the rate of heat transfer is higher in the mixture of the nickel + Eyring-Powell case compared to the nickel + Carreau case. From this we can highlight that, depending on the industrial appliances, we can use heating or cooling processes for Eyring and Carreau fluids, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.S.K. Raju, N. Sandeep, M. Jayachandra Babu, V. Sugunamma, Alex. Eng. J. 55, 151 (2016)

    Article  Google Scholar 

  2. C.S.K. Raju, N. Sandeep, Int. J. Eng. Res. Africa 21, 33 (2015)

    Article  Google Scholar 

  3. C.S.K. Raju, P. Sanjeevi, M.C.R.S.M. Ibrahim, G.L.E. Lorenzini, Contin. Mech. Thermodyn. 29, 1347 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Nadeem, A.U. Khan, S. Saleem, Eur. Phys. J. Plus 131, 261 (2016)

    Article  Google Scholar 

  5. R. Mehmood, S. Nadeem, S. Saleem, J. Taiwan Inst. Chem. Eng. 74, 49 (2017)

    Article  Google Scholar 

  6. T. Hayat, M. Waqas, S.A. Shehzad, A. Alsaedi, Eur. Phys. J. Plus 131, 253 (2017)

    Article  Google Scholar 

  7. M. Sheikholeslami, J. Mol. Liq. 234, 364 (2017)

    Article  Google Scholar 

  8. M. Sheikholeslami, Int. J. Hydrog. Energy 42, 821 (2017)

    Article  Google Scholar 

  9. X. He, W. Zhong, C.-T. Au, Y. Du, Nanoscale Res. Lett. 8, 446 (2013)

    Article  ADS  Google Scholar 

  10. G. Nair, S. Survase, Int. J. Chem. Phys. Sci. 3, 56 (2014)

    Google Scholar 

  11. S. Chandra, A. Kumar, P.K. Tomar, J. Saudi Chem. Soc. 18, 437 (2014)

    Article  Google Scholar 

  12. M. Sheikholeslami, J. Mol. Liq. 231, 555 (2017)

    Article  Google Scholar 

  13. M. Sheikholeslami, Eur. Phys. J. Plus 132, 55 (2017)

    Article  Google Scholar 

  14. M. Sheikholeslami Neural Comput. Appl. (2016) https://doi.org/10.1007/s00521-016-2740-7

    Article  Google Scholar 

  15. Kandelousi, Mohsen Sheikholeslami, Phys. Lett. A 378, 3331 (2014)

    Article  ADS  Google Scholar 

  16. M. Sheikholeslami, J. Braz. Soc. Mech. Sci. Eng. 37, 1623 (2015)

    Article  Google Scholar 

  17. S. Nadeem, S. Saleem, Nadeem, Inf. Sci. Lett. 3, 55 (2014)

    Article  Google Scholar 

  18. M. Sheikholeslami, H.B. Rokni, Int. J. Heat Mass Transfer 107, 288 (2017)

    Article  Google Scholar 

  19. M. Sheikholeslami, H.B. Rokni, Int. J. Hydrog. Energy 42, 14942 (2017)

    Article  Google Scholar 

  20. M. Sheikholeslami, Int. J. Hydrog. Energy 42, 19611 (2017)

    Article  Google Scholar 

  21. M. Sheikholeslami, A. Zeeshan, Int. J. Hydrog. Energy 42, 15393 (2017)

    Article  Google Scholar 

  22. P.J. Carreau, Trans. Soc. Rheol. 116, 99 (1972)

    Article  Google Scholar 

  23. R.E. Powell, H. Eyring, Nature 154, 427 (1944)

    Article  ADS  Google Scholar 

  24. C.S.K. Raju, K.R. Sekhar, S.M. Ibrahim, G. Lorenzini, G. Viswanatha Reddy, E. Lorenzini, Contin. Mech. Thermodyn. 29, 699 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. J. Rahimi, D.D. Ganji, M. Khaki, K. Hosseinzadeh, Alex. Eng. J. 56, 621 (2017)

    Article  Google Scholar 

  26. M. Jayachandra Babu, N. Sandeep, C.S.K. Raju, Int. J. Eng. Res. Africa 19, 57 (2015)

    Article  Google Scholar 

  27. C.S.K. Raju, N. Sandeep, Eur. Phys. J. Plus 131, 267 (2016)

    Article  Google Scholar 

  28. Mamatha. S. Upadhya, Mahesha, C.S.K. Raju, Inform. Med. Unlocked 9, 76 (2017)

    Article  Google Scholar 

  29. C.S.K. Raju, N. Sandeep, Alex. Eng. J. 55, 1115 (2016)

    Article  Google Scholar 

  30. T. Hayat, S. Asad, M. Mustafa, A. Alsaedi, PLoS ONE 9, e103214 (2014)

    Article  ADS  Google Scholar 

  31. C.S.K. Raju, M.M. Hoque, N.N. Anika, S.U. Mamatha, Powder Technol. 317, 408 (2017)

    Article  Google Scholar 

  32. M.Y. Malik, A. Hussain, S. Nadeem, Sci. Iran. 20, 313 (2013)

    Google Scholar 

  33. C.S.K. Raju, S.M. Ibrahim, S. Anuradha, P. Priyadharshini, Eur. Phys. J. Plus 131, 409 (2016)

    Article  Google Scholar 

  34. S. Siddiqa, A. Faryad, N. Begum, M.A. Hossain, S. Nadeem, S. Saleem, Indian J. Pure Appl. Phys. 52, 725 (2015)

    Google Scholar 

  35. M.A. Meraj, S.A. Shehzad, T. Hayat, F.M. Abbasi, A. Alsaedi, Appl. Math. Mech. 38, 557 (2017)

    Article  Google Scholar 

  36. T.C. Chiam, Acta Mech. 129, 63 (1998)

    Article  Google Scholar 

  37. M. Waqas, A. Alsaedi, S.A. Shehzad, T. Hayat, S. Asghar, J. Braz. Soc. Mech. Sci. Eng. 39, 3005 (2017)

    Article  Google Scholar 

  38. M.S. Abel, N. Mahesha, Appl. Math. Model. 32, 1965 (2008)

    Article  MathSciNet  Google Scholar 

  39. M.Y. Malik, A. Hussain, T. Salahuddin, M. Awais, S. Bilal, F. Khan, AIP Adv. 6, 045118 (2016)

    Article  ADS  Google Scholar 

  40. T. Hayat, S.A. Shehzad, M. Qasim, A. Alsaedi, Braz. J. Chem. Eng. 31, 109 (2014)

    Article  Google Scholar 

  41. N.B. Reddy, T. Poornima, P. Sreenivasulu, Int. J. Eng. Math. 2014, 905158 (2014)

    Google Scholar 

  42. M.A. El-Aziz, A.A. Afify, Braz. J. Phys. 46, 516 (2016)

    Article  ADS  Google Scholar 

  43. M. Abd El-Aziz, Int. Commun. Heat Mass Transf. 36, 521 (2009)

    Article  Google Scholar 

  44. M. Sheikholeslami, S.A. Shehzad, Int. J. Heat Mass Transfer 113, 796 (2017)

    Article  Google Scholar 

  45. M. Sheikholeslami, S.A. Shehzad, Int. J. Heat Mass Transfer 109, 82 (2017)

    Article  Google Scholar 

  46. M. Sheikholeslami, J. Mol. Liq. 229, 137 (2017)

    Article  Google Scholar 

  47. M. Sheikholeslami, H.B. Rokni, Eur. Phys. J. Plus 132, 238 (2017)

    Article  Google Scholar 

  48. M. Sheikholeslami, M. Sadoughi, Int. J. Heat Mass Transfer 113, 106 (2017)

    Article  Google Scholar 

  49. M. Sheikholeslami, M.M. Bhatti, Int. J. Heat Mass Transfer 111, 1039 (2017)

    Article  Google Scholar 

  50. M. Sheikholeslami, H.B. Rokni, Int. J. Heat Mass Transfer 114, 517 (2017)

    Article  Google Scholar 

  51. M. Sheikholeslami, A. Zeeshan, Comput. Methods Appl. Mech. Eng. 320, 68 (2017)

    Article  ADS  Google Scholar 

  52. B.J. Gireesha, A.J. Chamkha, S. Manjunatha, C.S. Bagewadi, Int. J. Numer. Methods Heat Fluid Flow 23, 598 (2013)

    Article  Google Scholar 

  53. M.R. Krishnamurthy, B.J. Gireesha, R.S.R. Gorla, B.C. Prasannakumara, J. Nanofluids 5, 502 (2016)

    Article  Google Scholar 

  54. S.U. Mamatha, Mahesha, C.S.K. Raju, J. Nanofluids 6, 1074 (2017)

    Article  Google Scholar 

  55. B.C. Prasannakumara, N.S. Shashikumar, P. Venkatesh, Nonlinear Eng. 6, 179 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. K. Raju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamatha Upadhya, S., Mahesha & Raju, C.S.K. Comparative study of Eyring and Carreau fluids in a suspension of dust and nickel nanoparticles with variable conductivity. Eur. Phys. J. Plus 133, 156 (2018). https://doi.org/10.1140/epjp/i2018-11979-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11979-x

Navigation