Skip to main content
Log in

RETRACTED ARTICLE: Variable viscosity on unsteady dissipative Carreau fluid over a truncated cone filled with titanium alloy nanoparticles

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

This article was retracted on 20 May 2017

This article has been updated

Abstract

In this study, we proposed a theoretical investigation on the temperature-dependent viscosity effect on magnetohydrodynamic dissipative nanofluid over a truncated cone with heat source/sink. The involving set of nonlinear partial differential equations is transforming to set of nonlinear ordinary differential equations by using self-similarity solutions. The transformed governing equations are solved numerically using Runge–Kutta-based Newton’s technique. The effects of various dimensionless parameters on the skin friction coefficient and the local Nusselt number profiles are discussed and presented with the support of graphs. We also obtained the validation of the current solutions with existing solution under some special cases. The water-based titanium alloy has a lesser friction factor coefficient as compared with kerosene-based titanium alloy, whereas the rate of heat transfer is higher in water-based titanium alloy compared with kerosene-based titanium alloy. From this we can highlight that depending on the industrial needs cooling/heating chooses the water- or kerosene-based titanium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 20 May 2017

    An erratum to this article has been published.

Abbreviations

uvw :

Velocity components in xy and z directions, respectively (m/s)

x :

Distance along the surface (m)

y :

Distance normal to the surface (m)

\(c_\mathrm{p}\) :

Specific heat capacity at constant pressure (J/kg K)

fg :

Dimensionless velocities

T :

Temperature of the fluid (K)

g :

Acceleration due to gravity (m/s\(^{2}\))

\(k_\mathrm{f} \) :

Thermal conductivity (W/mK)

\(\alpha \) :

Diffusion coefficient (m\(^{2}\)/s)

P :

Pressure (pa)

\(\eta \) :

Similarity variable

\(\sigma \) :

Electrical conductivity (Siemens)

\(\sigma ^{*}\) :

Stefan–Boltzmann constant (W m/K\(^{4}\))

\(k^{*}\) :

Mean absorption coefficient

\(\beta _\mathrm{T} \) :

Volumetric thermal expansion (K\(^{-1}\))

\(\theta \) :

Dimensionless temperature (K)

\(\rho _\mathrm{f} \) :

Density (kg/m\(^{3}\))

\(\nu _\mathrm{f} \) :

Kinematic viscosity (m\(^{2}\)/s)

\(\mu _\mathrm{f} \) :

Dynamic viscosity (N s/m\(^{2}\))

\(\phi \) :

Nanoparticle volume fraction

\((\rho c_\mathrm{p} )_\mathrm{f} \) :

Effective heat capacity of the fluid (kg/m\(^{3}\)K)

\((\rho c_\mathrm{p} )_\mathrm{p} \) :

Effective heat capacity of the nanoparticle medium (kg/m\(^{3}\)K)

\(Q_\mathrm{H} \) :

Heat source/sink parameter

\(Cf_x \) :

Skin friction coefficient in x direction

\(Cf_y \) :

Skin friction coefficient in y direction

\(Nu_x \) :

Local Nusselt number

\({Re}_x \) :

Local Reynolds number

\({ Pr}\) :

Prandtl number

Ec :

Eckert number

E :

Viscous variation parameter

We :

Weissenberg number

n :

Power-law index parameter

\(\gamma \) :

Half-angle parameter

\(\lambda \) :

Buoyancy parameter

\(\alpha _1 \) :

Ratio of angles

M :

Magnetic field parameter

\(Gr_x \) :

Grashof number

f:

Fluid

w:

Condition at the wall

\(\infty \) :

Condition at the free stream

nf:

Nanofluid

References

  1. Tien, C.L.: Heat transfer by laminar flow from a rotating cone. J. Heat Transf. 82, 252–253 (1960)

    Article  Google Scholar 

  2. Lin, A., Robin, S.G.: Three-dimensional supersonic viscous flow over a cone at incidence. AIAA J. 20, 1500–1507 (1982)

    Article  ADS  Google Scholar 

  3. Subba, R., Gorla, R.: Mixed convection of a micropolar fluid from rotating cone. Int. J. Heat Fluid Flow 16(1), 69–73 (1995)

    Article  Google Scholar 

  4. Chamkha, A.J.: Coupled heat and mass transfer by natural convection about a truncated cone in the presence of magnetic field and radiation effects. Numer. Heat Transf. Part A Appl. Int. J. Comput. Methods 39(5), 511–530 (2001)

    Article  ADS  Google Scholar 

  5. Mahdy, A., Chamkha, A.J., Baba, Y.: Double-diffusive convection with variable viscosity from a vertical truncated cone in porous media in the presence of magnetic field and radiation effects. Comput. Math. Appl. 59(12), 3867–3878 (2010)

    Article  MathSciNet  Google Scholar 

  6. Saleem, S., Nadeem, S., Haq, R.U.: Buoyancy and metallic particle effects on an unsteady water-based fluid flow along a vertically rotating cone. Eur. Phys. J. Plus 129, 1–8 (2014). doi:10.1140/epjp/i2014-14213-1

    Article  Google Scholar 

  7. Raju, C.S.K., JayachandraBabu, M., Sandeep, N.: Chemically reacting radiative MHD Jeffrey nanofluid flow over a cone in porous medium. Int. J. Eng. Res. Africa 19, 75–90 (2015). doi:10.4028/www.scientific.net/JERA.19.75

    Article  Google Scholar 

  8. Saleem, S., Nadeem, S.: Theoretical analysis of slip flow on a rotating cone with viscous dissipation effects. J. Hydrodyn. 27, 616–623 (2015). doi:10.1016/S1001-6058(15)60523-6

    Article  ADS  Google Scholar 

  9. Nadeem, S., Saleem, S.: Unsteady mixed convection flow of a rotating second-grade fluid on a rotating cone. Heat Transf. Asian Res. 43, 204–220 (2014). doi:10.1002/htj.21072

    Article  Google Scholar 

  10. Raju, C.S.K., Sandeep, N.: Heat and mass transfer in MHD non-Newtonian bio-convection flow over a rotating cone/plate with cross diffusion. J. Mol. Liq. 215, 115–126 (2016). doi:10.1016/j.molliq.2015.12.058

    Article  Google Scholar 

  11. Patrulescu, F.O., Grosan, T., Pop, I.: Mixed convection boundary layer flow from a vertical truncated cone in a nanofluid. Int. J. Numer. Methods Heat Fluid Flow 24(5), 1175–1190 (2014)

    Article  MathSciNet  Google Scholar 

  12. Selim, A., Hossain, M.A., Rees, D.A.S.: The effect of surface mass transfer on mixed convection flow past a heated vertical flat permeable plate with thermophoresis. Int. J. Therm. Sci. 42, 973–982 (2003). doi:10.1016/S1290-0729(03)00075-9

    Article  Google Scholar 

  13. Makinde, O.D., Aziz, A.: Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Therm. Sci. 50, 1326–1332 (2011). doi:10.1016/j.ijthermalsci.2011.02.019

    Article  Google Scholar 

  14. Hogan, C.: Density of states of an insulating ferromagnetic alloy. Phys. Rev. 188(2), 870 (1969)

    Article  ADS  Google Scholar 

  15. Parayanthal, P., Pollak, F.H.: Raman scattering in alloy semiconductors: spatial correlation model. Phys. Rev. Lett. 52, 1822–1825 (1984). doi:10.1103/PhysRevLett.52.1822

    Article  ADS  Google Scholar 

  16. Žitňanský, M., Čaplovič, L.: Effect of the thermomechanical treatment on the structure of titanium alloy Ti\(_6\)Al\(_4\)V. J. Mater. Process. Technol. (2004). doi:10.1016/j.jmatprotec.2004.07.151

  17. Zhu, X.J., Tan, M.J., Zhou, W.: Enhanced super plasticity in commercially pure titanium alloy. Scr. Mater. 52, 651–655 (2005). doi:10.1016/j.scriptamat.2004.11.017

    Article  Google Scholar 

  18. Hao, Y.L., Li, S.J., Sun, B.B., Sui, M.L., Yang, R.: Ductile titanium alloy with low poisson’s ratio. Phys. Rev. Lett. (2007). doi:10.1103/PhysRevLett.98.216405

  19. Balazic, M., Kopac, J., Jackson, M.J., Ahmed, W.: Review: titanium and titanium alloy applications in medicine. Int. J. Nano Biomater. 1, 3–34 (2007). doi:10.1504/IJNBM.2007.016517

    Article  Google Scholar 

  20. Maxwell, J.C.: A Treatise on Electricity and Magnetism, vol. 1, 2nd edn. Clarendon Press, Oxford (1881)

    MATH  Google Scholar 

  21. Choi, U.S.: Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows. In: Siginer, D.A., Wang, H.P. (eds.) FED-Vol. 66, pp. 99–105. ASME, New York (1995)

  22. Aksoy, Y.: Effects of couple stresses on the heat transfer and entropy generation rates for a flow between parallel plates with constant heat flux. Int. J. Therm. Sci. 107, 1–12 (2016). doi:10.1016/j.ijthermalsci.2016.03.017

    Article  Google Scholar 

  23. Bachok, N., Ishak, A., Pop, I.: Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. Int. J. Thermal Sci. 49(9), 1663–1668 (2010)

    Article  Google Scholar 

  24. Chamka, A.J., Aly, A.M.: MHD free convection flow of a nanofluid past a vertical plate in the presence of heat generation or absorption effects. J. Chem. Eng. Commun. 198(3), 425–441 (2010)

    Article  Google Scholar 

  25. Hoffmann, J.-F., Henry, J.-F., Vaitilingom, G., Olives, R., Chirtoc, M., Caron, D., et al.: Temperature dependence of thermal conductivity of vegetable oils for use in concentrated solar power plants, measured by 3omega hot wire method. Int. J. Therm. Sci. 107, 105–110 (2016). doi:10.1016/j.ijthermalsci.2016.04.002

    Article  Google Scholar 

  26. Noghrehabadi, A., Behseresht, A.: Flow and heat transfer affected by variable properties of nanofluids in natural convection over a vertical cone in porous media. Comput. Fluids 88, 313–325 (2013)

    Article  MathSciNet  Google Scholar 

  27. Anilkumar, D., Roy, S.: Unsteady mixed convection flow on a rotating cone in a rotating fluid. Appl. Math. Comput. 155, 545–561 (2004). doi:10.1016/S0096-3003(03)00799-9

    Article  MathSciNet  MATH  Google Scholar 

  28. Cheng, Y.C.: Free convection heat transfer from a non-isothermal permeable cone with suction and temperature-dependent viscosity. J. Appl. Sci. Eng. 18(1), 17–24 (2015)

    ADS  Google Scholar 

  29. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128, 240 (2006). doi:10.1115/1.2150834

    Article  Google Scholar 

  30. Raju, C.S.K., Sandeep, N.: Unsteady Casson nanofluid flow over a rotating cone in a rotating frame filled with ferrous nanoparticles: a numerical study. J. Magn. Magn. Mater (2017). doi:10.1016/j.jmmm.2016.08.013

  31. Mabood, F., Ibrahim, S.M., Rashidi, M.M., Shadloo, M.S., Lorenzini, Giulio: Non-uniform heat source/sink and Soret effects on MHD non-Darcian convective flow past a stretching sheet in a micropolar fluid with radiation. Int. J. Heat Mass Transf. 93, 674–682 (2016)

    Article  Google Scholar 

  32. Raju, C.S.K., Sandeep, N., Sugunamma, V.: Unsteady magneto-nanofluid flow caused by a rotating cone with temperature dependent viscosity: a surgical implant application. J. Mol. Liq (2016). doi:10.1016/j.molliq.2016.07.143

  33. Mallikarjuna, B., Chamkha, A.J., Vijaya, R.B.: Soret and dufour effects on double diffusive convective flow through a non-Darcy porous medium in a cylindrical annular region in the presence of heat sources. J. Porous Media 17(7), 623–636 (2014)

  34. Raju, C.S.K., Sandeep, N.: Falkner Skan flow of a magnetic Carreau fluid past a wedge in the presence of cross diffusion. Eur. Phys. J. Plus 131, 267 (2016)

    Article  Google Scholar 

  35. Mabood, F., Ibrahim, S.M.: Effects of Soret and non-uniform heat source on MHD non-Darcian convective flow over a stretching sheet in a dissipative micropolar fluid with radiation. J. Appl. Fluid Mech. 9(5), 2503–2513 (2016)

    Google Scholar 

  36. Raju, C.S.K., Sandeep, N.: The effect of thermal radiation on MHD ferrofluid flow over a truncated cone in the presence of non-uniform heat source/sink. Glob. J. Pure Appl. Math. 12(1), 9–15 (2016)

    Google Scholar 

  37. Mallikarjuna, B., Rashad, A.M., Chamkha, A.J., Raju, S.H.: Chemical reaction effects on MHD convective heat and mass transfer flow past a rotating vertical cone embedded in a variable porosity regime. Afrika Matematika 27(3–4), 645–665 (2016)

    Article  MathSciNet  Google Scholar 

  38. Raju, C.S.K., Ibrahim, S.M., Anuradha, S., Priyadharshini, P.: Bio-convection on the nonlinear radiative flow of a Carreau fluid over a moving wedge with suction or injection. Eur. Phys. J. Plus. (2016). doi:10.1140/epjp/i2016-16409-7

    Article  Google Scholar 

  39. Raju, R.S., Sudhakar, K., Rangamma, M.J.: The effects of thermal radiation and heat source on an unsteady MHD free convection flow past an infinite vertical plate with thermal diffusion and diffusion thermo. Inst. Eng. India Ser. C 94, 175 (2013). doi:10.1007/s40032-013-0063-3

    Article  Google Scholar 

  40. Ibrahim, S.M., Suneetha, K.: Heat source and chemical effects on MHD convection flow embedded in a porous medium with Soret, viscous and Joules dissipation. Ain Shams Eng. J. 7(2), 811–818 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lorenzini.

Additional information

Communicated by Andreas Öchsner.

Due to the technical mistakes, some equations in the paper are wrong and the overall results are doubtful, the authors have requested to retract their article.

An erratum to this article can be found online at http://dx.doi.org/10.1007/s00161-017-0576-8

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raju, C.S.K., Sekhar, K.R., Ibrahim, S.M. et al. RETRACTED ARTICLE: Variable viscosity on unsteady dissipative Carreau fluid over a truncated cone filled with titanium alloy nanoparticles. Continuum Mech. Thermodyn. 29, 699–713 (2017). https://doi.org/10.1007/s00161-016-0552-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0552-8

Keywords

Navigation