Skip to main content
Log in

Impact of interfacial imperfection on transverse wave in a functionally graded piezoelectric material structure with corrugated boundaries

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The propagation behavior of Love-type wave in a corrugated functionally graded piezoelectric material layered structure has been taken into account. Concretely, the layered structure incorporates a corrugated functionally graded piezoelectric material layer imperfectly bonded to a functionally graded piezoelectric material half-space. An analytical treatment has been employed to determine the dispersion relation for both cases of electrically open condition and electrically short condition. The phase velocity of the Love-type wave has been computed numerically and its dependence on the wave number has been depicted graphically for a specific type of corrugated boundary surfaces for both said conditions. The crux of the study lies in the fact that the imperfect bonding of the interface, the corrugated boundaries present in the layer, and the material properties of the layer and the half-space strongly influence the phase velocity of the Love-type wave. It can be remarkably noted that the imperfect bonding of the interface reduces the phase velocity of the Love-type wave significantly. As a special case of the problem, it is noticed that the procured dispersion relation for both cases of electrically open and electrically short conditions is in accordance with the classical Love wave equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.Q. Chen, J.B. Cai, G.R. Ye, Y.F. Wang, Int. J. Solids Struct. 41, 5247 (2004)

    Article  Google Scholar 

  2. X. Wang, E. Pan, A.K. Roy, Acta Mech. 193, 177 (2007)

    Article  Google Scholar 

  3. Q.H. Fang, Y.W. Liu, B. Jin, P.H. Wen, Int. J. Eng. Sci. 47, 39 (2009)

    Article  Google Scholar 

  4. J. Liu, Y. Wang, B. Wang, IEEE T. Ultrason. Ferr. 57, 1875 (2010)

    Article  Google Scholar 

  5. Y. Pang, J. Liu, Eur. J. Mech. A Solid 30, 731 (2011)

    Article  ADS  Google Scholar 

  6. B.M. Singh, J. Rokne, Philos. Mag. 93, 1690 (2013)

    Article  ADS  Google Scholar 

  7. H.M. Wang, Z.C. Zhao, Arch. Appl. Mech. 83, 43 (2013)

    Article  ADS  Google Scholar 

  8. Z. Wang, J. Zhu, X.Y. Jin, W.Q. Chen, C. Zhang, J. Mech. Phys. Solids 65, 138 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  9. P. Li, F. Jin, Acta Mech. 226, 267 (2015)

    Article  MathSciNet  Google Scholar 

  10. J. Du, X. Jin, J. Wang, K. Xian, Ultrasonics 46, 13 (2007)

    Article  Google Scholar 

  11. J.W. Shin, Y. Lee, Int. J. Solids Struct. 47, 2706 (2010)

    Article  Google Scholar 

  12. A.H. Akbarzadeh, M.H. Babaei, Z.T. Chen, Smart Mater. Struct. 20, 065008 (2011)

    Article  ADS  Google Scholar 

  13. P. Liu, T. Yu, T.Q. Bui, C. Zhang, Y. Xu, C.W. Lim, Int. J. Solids Struct. 51, 2167 (2014)

    Article  Google Scholar 

  14. S. Zhu, D. Zhang, K. Zhou, X. Li, Eur. J. Mech. A Solid 51, 21 (2015)

    Article  ADS  Google Scholar 

  15. S.R. Seshadri, IEEE Trans. Son. Ultrason. 25, 378 (1978)

    Article  Google Scholar 

  16. S.R. Seshadri, J. Acoust. Soc. Am. 65, 687 (1979)

    Article  ADS  Google Scholar 

  17. M. Tsutsumi, N. Kumagai, IEEE Trans. Microw. Theory 28, 627 (1980)

    Article  Google Scholar 

  18. R. Barretta, Int. J. Solids Struct. 49, 3038 (2012)

    Article  Google Scholar 

  19. R. Barretta, J. Elast. 112, 233 (2013)

    Article  Google Scholar 

  20. R. Barretta, Acta Mech. 225, 2075 (2014)

    Article  MathSciNet  Google Scholar 

  21. R. Barretta, L. Feo, R. Luciano, Compos. Struct. 123, 132 (2015)

    Article  Google Scholar 

  22. A.K. Singh, Z. Parween, S. Kumar, J. Intell. Mater. Syst. Struct. 27, 2616 (2016)

    Article  Google Scholar 

  23. S.Y. Atwa, M. Nazeer, J. Adnan, N. Rehman, Eur. Phys. J. Plus 132, 301 (2017)

    Article  Google Scholar 

  24. N. Kumari, A. Chattopadhyay, S. Kumar, A.K. Singh, Wave Random Complex 27, 195 (2017)

    Article  Google Scholar 

  25. A.K. Singh, S. Kumar, Dharmender, S. Mahto, Multidisc. Model. Mater. Struct. 13, 188 (2017)

    Article  Google Scholar 

  26. A.K. Singh, Z. Parween, S. Kumar, A. Chattopadhyay, J. Intell. Mater. Syst. Struct. (2017) https//doi.org/10.1177/1045389X17721025

  27. H. Liu, Z.K. Wang, T.J. Wang, Int. J. Solids Struct. 38, 37 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santan Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar Singh, A., Kumar, S. & Kumari, R. Impact of interfacial imperfection on transverse wave in a functionally graded piezoelectric material structure with corrugated boundaries. Eur. Phys. J. Plus 133, 120 (2018). https://doi.org/10.1140/epjp/i2018-11935-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11935-x

Navigation