Impact of interfacial imperfection on transverse wave in a functionally graded piezoelectric material structure with corrugated boundaries

Regular Article
  • 9 Downloads

Abstract.

The propagation behavior of Love-type wave in a corrugated functionally graded piezoelectric material layered structure has been taken into account. Concretely, the layered structure incorporates a corrugated functionally graded piezoelectric material layer imperfectly bonded to a functionally graded piezoelectric material half-space. An analytical treatment has been employed to determine the dispersion relation for both cases of electrically open condition and electrically short condition. The phase velocity of the Love-type wave has been computed numerically and its dependence on the wave number has been depicted graphically for a specific type of corrugated boundary surfaces for both said conditions. The crux of the study lies in the fact that the imperfect bonding of the interface, the corrugated boundaries present in the layer, and the material properties of the layer and the half-space strongly influence the phase velocity of the Love-type wave. It can be remarkably noted that the imperfect bonding of the interface reduces the phase velocity of the Love-type wave significantly. As a special case of the problem, it is noticed that the procured dispersion relation for both cases of electrically open and electrically short conditions is in accordance with the classical Love wave equation.

References

  1. 1.
    W.Q. Chen, J.B. Cai, G.R. Ye, Y.F. Wang, Int. J. Solids Struct. 41, 5247 (2004)CrossRefGoogle Scholar
  2. 2.
    X. Wang, E. Pan, A.K. Roy, Acta Mech. 193, 177 (2007)CrossRefGoogle Scholar
  3. 3.
    Q.H. Fang, Y.W. Liu, B. Jin, P.H. Wen, Int. J. Eng. Sci. 47, 39 (2009)CrossRefGoogle Scholar
  4. 4.
    J. Liu, Y. Wang, B. Wang, IEEE T. Ultrason. Ferr. 57, 1875 (2010)CrossRefGoogle Scholar
  5. 5.
    Y. Pang, J. Liu, Eur. J. Mech. A Solid 30, 731 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    B.M. Singh, J. Rokne, Philos. Mag. 93, 1690 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    H.M. Wang, Z.C. Zhao, Arch. Appl. Mech. 83, 43 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Z. Wang, J. Zhu, X.Y. Jin, W.Q. Chen, C. Zhang, J. Mech. Phys. Solids 65, 138 (2014)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    P. Li, F. Jin, Acta Mech. 226, 267 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    J. Du, X. Jin, J. Wang, K. Xian, Ultrasonics 46, 13 (2007)CrossRefGoogle Scholar
  11. 11.
    J.W. Shin, Y. Lee, Int. J. Solids Struct. 47, 2706 (2010)CrossRefGoogle Scholar
  12. 12.
    A.H. Akbarzadeh, M.H. Babaei, Z.T. Chen, Smart Mater. Struct. 20, 065008 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    P. Liu, T. Yu, T.Q. Bui, C. Zhang, Y. Xu, C.W. Lim, Int. J. Solids Struct. 51, 2167 (2014)CrossRefGoogle Scholar
  14. 14.
    S. Zhu, D. Zhang, K. Zhou, X. Li, Eur. J. Mech. A Solid 51, 21 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    S.R. Seshadri, IEEE Trans. Son. Ultrason. 25, 378 (1978)CrossRefGoogle Scholar
  16. 16.
    S.R. Seshadri, J. Acoust. Soc. Am. 65, 687 (1979)ADSCrossRefGoogle Scholar
  17. 17.
    M. Tsutsumi, N. Kumagai, IEEE Trans. Microw. Theory 28, 627 (1980)CrossRefGoogle Scholar
  18. 18.
    R. Barretta, Int. J. Solids Struct. 49, 3038 (2012)CrossRefGoogle Scholar
  19. 19.
    R. Barretta, J. Elast. 112, 233 (2013)CrossRefGoogle Scholar
  20. 20.
    R. Barretta, Acta Mech. 225, 2075 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    R. Barretta, L. Feo, R. Luciano, Compos. Struct. 123, 132 (2015)CrossRefGoogle Scholar
  22. 22.
    A.K. Singh, Z. Parween, S. Kumar, J. Intell. Mater. Syst. Struct. 27, 2616 (2016)CrossRefGoogle Scholar
  23. 23.
    S.Y. Atwa, M. Nazeer, J. Adnan, N. Rehman, Eur. Phys. J. Plus 132, 301 (2017)CrossRefGoogle Scholar
  24. 24.
    N. Kumari, A. Chattopadhyay, S. Kumar, A.K. Singh, Wave Random Complex 27, 195 (2017)CrossRefGoogle Scholar
  25. 25.
    A.K. Singh, S. Kumar, Dharmender, S. Mahto, Multidisc. Model. Mater. Struct. 13, 188 (2017)CrossRefGoogle Scholar
  26. 26.
    A.K. Singh, Z. Parween, S. Kumar, A. Chattopadhyay, J. Intell. Mater. Syst. Struct. (2017) https//doi.org/10.1177/1045389X17721025Google Scholar
  27. 27.
    H. Liu, Z.K. Wang, T.J. Wang, Int. J. Solids Struct. 38, 37 (2001)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Abhishek Kumar Singh
    • 1
  • Santan Kumar
    • 1
  • Richa Kumari
    • 1
  1. 1.Department of Applied MathematicsIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations