Skip to main content
Log in

Strong circular dichroism in a non-chiral metasurface based on an array of metallic V-shaped nanostructures

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, an extrinsic chiral metasurface based on a silver thin film containing a periodic array of V-shaped nanostructures is proposed. The proposed structure is normally and obliquely illuminated by right- and left-handed circularly polarized plane waves and the transmission through the structure is calculated using the frequency domain finite-integration technique. Our simulation results show that the designed metasurface exhibits strong circular dichroism (CD) in the transmission \(\Delta = T_{{\rm RCP}}- T_{{\rm LCP}}=0.98\) in the near-infrared region under oblique incidence. To our knowledge, this is one of highest CD effects that have been achieved so far in the single-layer metasurface based on metallic nanostructures. The physical mechanism for this strong CD effect is explained in terms of the current density distribution. Furthermore, the effects of change of the incident angle, the refractive index of surrounding medium and structure parameters, such as film thickness and lattice constants on CD spectrum, are investigated. In addition, the CD phenomenon in the structure is analyzed in other frequency regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Smith, J. Pendry, M. Wiltshire, Science 305, 788 (2004)

    Article  ADS  Google Scholar 

  2. C.M. Soukoulis, M. Wegener, Nat. Photon. 5, 523 (2011)

    Article  ADS  Google Scholar 

  3. Y. Liu, X. Zhang, Chem. Soc. Rev. 40, 2494 (2011)

    Article  Google Scholar 

  4. X. Wan, W. Xiang Jiang, H. Feng Ma, T. Jun Cui, Appl. Phys. Lett. 104, 151601 (2014)

    Article  ADS  Google Scholar 

  5. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Nano Lett. 10, 2342 (2010)

    Article  ADS  Google Scholar 

  6. X. Ni, A.V. Kildishev, V.M. Shalaev, Nat. Commun. 4, 2807 (2013)

    ADS  Google Scholar 

  7. B. Zhang, J. Hendrickson, N. Nader, H.T. Chen, J. Guo, Appl. Phys. Lett. 105, 241113 (2014)

    Article  ADS  Google Scholar 

  8. V.S. Asadchy, Y. Ra'di, J. Vehmas, S.A. Tretyakov, Phys. Rev. Lett. 114, 095503 (2015)

    Article  ADS  Google Scholar 

  9. A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Science 339, 1232009 (2013)

    Article  Google Scholar 

  10. A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, N. Engheta, Science 343, 160 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  11. N. Yu, F. Capasso, Nat. Mater. 13, 139 (2014)

    Article  ADS  Google Scholar 

  12. V.A. Fedotov, P.L. Mladyonov, S.L. Prosvirnin, A.V. Rogacheva, Y. Chen, N.I. Zheludev, Phys. Rev. Lett. 97, 167401 (2006)

    Article  ADS  Google Scholar 

  13. M. Mutlu, A.E. Akosman, A.E. Serebryannikov, E. Ozbay, Opt. Express 19, 14290 (2011)

    Article  ADS  Google Scholar 

  14. M. Kang, J. Chen, H.X. Cui, Y. Li, H.T. Wang, Opt. Express 19, 8347 (2011)

    Article  ADS  Google Scholar 

  15. C. Huang, Y. Feng, J. Zhao, Z. Wang, T. Jiang, Phys. Rev. B 85, 1951311 (2012)

    Google Scholar 

  16. L. Wu, Z. Yang, Y. Cheng, M. Zhao, R. Gong, Y. Zheng, J.A. Duan, X. Yuan, Appl. Phys. Lett. 103, 021903 (2013)

    Article  ADS  Google Scholar 

  17. D.Y. Liu, L.F. Yao, X.M. Zhai, M.H. Li, J.F. Dong, Appl. Phys. A 116, 9 (2014)

    Article  ADS  Google Scholar 

  18. Y.H. Wang, J. Shao, J. Li, Z. Liu, J. Li, Z.G. Dong, Y. Zhai, J. Appl. Phys. 117, 173102 (2015)

    Article  ADS  Google Scholar 

  19. G.D. Fasman, N.C. Price, Protein Science 5, 2134 (1996)

    Google Scholar 

  20. M. Decker, M.W. Klein, M. Wegener, S. Linden, Opt. Lett. 32, 856 (2007)

    Article  ADS  Google Scholar 

  21. D.H. Kwon, P.L. Werner, D.H. Werner, Opt. Express 16, 11802 (2008)

    Article  ADS  Google Scholar 

  22. E. Plum, J. Zhou, J. Dong, V.A. Fedotov, T. Koschny, C.M. Soukoulis, N.I. Zheludev, Phys. Rev. B 79, 035407 (2009)

    Article  ADS  Google Scholar 

  23. E. Plum, V.A. Fedotov, A.S. Schwanecke, N.I. Zheludev, Y. Chen, Appl. Phys. Lett. 90, 223113 (2007)

    Article  ADS  Google Scholar 

  24. J.K. Gansel, M. Thiel, M.S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, Science 325, 1513 (2009)

    Article  ADS  Google Scholar 

  25. S. Wu, P. Qu, J. Liu, D. Lei, K. Zhang, S. Zhao, Y. Zhu, Opt. Express 24, 27763 (2016)

    Article  ADS  Google Scholar 

  26. S. Kaya, Opt. Mater. Express 4, 2332 (2014)

    Article  Google Scholar 

  27. B. Tang, Z. Li, E. Palacios, Z. Liu, S. Butun, K. Aydin, IEEE Photon. Technol. Lett. 29, 295 (2017)

    Article  ADS  Google Scholar 

  28. T. Cao, M.J. Cryan, J. Opt. 14, 085101 (2012)

    Article  ADS  Google Scholar 

  29. T. Cao, C. Wei, L. Zhang, Opt. Mater. Express 4, 1526 (2014)

    Article  Google Scholar 

  30. B. Yan, K. Zhong, H. Ma, Y. Li, C. Sui, J. Wang, Y. Shi, Opt. Commun. 383, 57 (2017)

    Article  ADS  Google Scholar 

  31. J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, C. Wang, Sci. Rep. 7, 41893 (2017)

    Article  ADS  Google Scholar 

  32. B. Wang, J. Zhou, T. Koschny, C.M. Soukoulis, Appl. Phys. Lett. 94, 151112 (2009)

    Article  ADS  Google Scholar 

  33. E. Plum, X.X. Liu, V.A. Fedotov, Y. Chen, D.P. Tsai, N.I. Zheludev, Phys. Rev. Lett. 102, 113902 (2009)

    Article  ADS  Google Scholar 

  34. C. Feng, Z.B. Wang, S. Lee, J. Jiao, L. Li, Opt. Commun. 285, 2750 (2012)

    Article  ADS  Google Scholar 

  35. E. Plum, V.A. Fedotov, N.I. Zheludev, Appl. Phys. Lett. 93, 191911 (2008)

    Article  ADS  Google Scholar 

  36. V. Yannopapas, Opt. Lett. 34, 632 (2009)

    Article  ADS  Google Scholar 

  37. S. Lee, Z. Wang, C. Feng, J. Jiao, A. Khan, L. Li, Opt. Commun. 309, 201 (2013)

    Article  ADS  Google Scholar 

  38. T. Cao, L. Zhang, R.E. Simpson, C. Wei, M.J. Cryan, Opt. Express 21, 27841 (2013)

    Article  ADS  Google Scholar 

  39. Y.Z. Cheng, Y.L. Yang, Y.J. Zhou, Z. Zhang, X.S. Mao, R.Z. Gong, J. Mod. Opt. 63, 1675 (2016)

    Article  ADS  Google Scholar 

  40. S. Droulias, V. Yannopapas, J. Phys. Chem. C 117, 1130 (2013)

    Article  Google Scholar 

  41. X. Garcia-Santiago, S. Burger, C. Rockstuhl, I. Fernandez-Corbaton, Opt. Lett. 42, 4075 (2017)

    Article  ADS  Google Scholar 

  42. Bingnan Wang, Jiangfeng Zhou, Thomas Koschny, Maria Kafesaki, Costas M. Soukoulis, J. Opt. A 11, 114003 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Ghasempour Ardakani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardakani, A.G., Moradi, K. Strong circular dichroism in a non-chiral metasurface based on an array of metallic V-shaped nanostructures. Eur. Phys. J. Plus 133, 73 (2018). https://doi.org/10.1140/epjp/i2018-11909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11909-0

Navigation