Skip to main content
Log in

Electrically tunable optical properties of one-dimensional photonic crystal containing nanocomposite structurally chiral material

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present paper, the reflection and transmission properties of a one-dimensional photonic crystal made of alternate layers of isotropic dielectric medium and electro-optic nanocomposite structurally chiral medium (NSCM) are investigated. The electro-optic NSCM is a nanocomposite medium consisting structurally chiral material (SCM) where the silver nanoparticles are randomly dispersed inside it. The numerical results show three kinds of photonic bandgap in this structure, including traditional Bragg gap, circular Bragg gap and plasmonic absorption bandgap, which is due to the plasmonic resonance and absorption of the silver nanoparticles. The effect of the external low-frequency electric field is investigated on the reflection and transmission spectra of the structure. It is shown that the impact of the applied voltage depends on the value of the tilt angle and the maximum changes are experienced for the case of \(\chi = 90^\circ\). Also, the results show that the width of the traditional and circular Bragg gaps is sensitive to the applied voltage; however, the variation of the circular Bragg gap is more noticeable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V V Varadan, A Lakhtakia and V K Varadan Optik 80 27 (1988)

    CAS  Google Scholar 

  2. A Lakhtakia and R Messier Sculptured Thin Films: Nanoengineered Morphology and Optics (Bellingham: SPIE Press) (2005)

    Book  Google Scholar 

  3. J Fergason Mol. Cryst. 1 293 (1966)

    Article  CAS  Google Scholar 

  4. H Finkelmann, S Kim, A Muñoz, P Palffy-Muhoray and B Taheri Adv. Mater. 13 1069 (2001)

    Article  CAS  Google Scholar 

  5. M Faryad and A Lakhtakia Adv. Opt. Photon. 6 225 (2014)

    Article  CAS  Google Scholar 

  6. C Avendaño, S Ponti, J Reyes and C Oldano J. Phys. A: Math. Gen. 38 8821 (2005)

    Article  ADS  Google Scholar 

  7. C Avendaño and J Reyes Phys. Rev. E. 85 021702 (2012)

    Article  ADS  Google Scholar 

  8. C Koerdt, G Düchs and G L J A Rikken Phys. Rev. Lett. 91 073902 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. A Gevorgyan Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 382 1 (2002)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. A Gevorgyan Tech. Phys. 47 1008 (2002)

    Article  CAS  Google Scholar 

  11. J Mendoza, J Reyes and C Avendaño Phys. Rev. A. 94 053839 (2016)

    Article  ADS  Google Scholar 

  12. C Avendaño and L Palomares Appl. Opt. 57 3119 (2018)

    Article  ADS  PubMed  Google Scholar 

  13. T Espinosa-Ortega and J Reyes Opt. Commun. 281 5830 (2008)

    Article  ADS  CAS  Google Scholar 

  14. C Avendaño and J Reyes Phys. Rev. E 85 021702 (2012)

    Article  ADS  Google Scholar 

  15. J Reyes and A Lakhtakia Opt. Commun. 259 164 (2006)

    Article  ADS  CAS  Google Scholar 

  16. J Reyes and A Lakhtakia Opt. Commun. 266 565 (2006)

    Article  ADS  Google Scholar 

  17. A Lakhtakia J. Eur. Opt. Soc. Rapid. 1 06006 (2006)

    Article  Google Scholar 

  18. A Lakhtakia and J Reyes Optik. 119 253 (2008)

    Article  ADS  CAS  Google Scholar 

  19. L Palomares and J Reyes Appl. Phys. Lett. 93 181909 (2008)

    Article  ADS  Google Scholar 

  20. F Wang, A Lakhtakia and R Messier J. Mod. Opt. 50 239 (2003)

    Article  ADS  CAS  Google Scholar 

  21. M Franco-Ortiz, A Corella-Madueño, R Rosas-Burgos, J Reyes and C Avendaño J. Mod. Opt. 65 1994 (2018)

    Article  ADS  CAS  Google Scholar 

  22. S Shirin, A Madani and S R Entezar Opt. Mater. 107 110026 (2020)

    Article  CAS  Google Scholar 

  23. S Shirin, A Madani and S R Entezar Phys. Scr. 95 095504 (2020)

    Article  ADS  CAS  Google Scholar 

  24. M Scalora, J Dowling, M Bloemer and C Bowden Phys. Rev. Lett. 73 1368 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. H Altug, D Englund and J Vuckovi Nat. Phys. 2 484 (2006)

    Article  CAS  Google Scholar 

  26. T Hattori, N T Surumachi and H Nakatsuka J. Opt. Soc. Am. B. 14 348 (1997)

    Article  ADS  CAS  Google Scholar 

  27. S John and T Quang Phys. Rev. A. 50 1764 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. P S J Russell, S Tredwell and P J Roberts Opt. Commun. 160 66 (1999)

    Article  ADS  CAS  Google Scholar 

  29. P Kramper, M Agio, C M Soukoulis, A Birner, F Muller, R B Wehrspohn, U Gosele and V Sandoghdar Phys. Rev. Lett. 92 113903 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. P Tran Opt. Lett. 21 1138 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. P Tran JOSA. B 16 70 (1999)

    Article  ADS  CAS  Google Scholar 

  32. L Gilles and P Tran J. Opt. Soc. Amer. B 19 630 (2002)

    Article  ADS  CAS  Google Scholar 

  33. P S J Russell J. Light. Technol. 24 4729 (2006)

    Article  Google Scholar 

  34. S E Kushnir and K S Napolskii Mater. Des. 144 140 (2018)

    Article  CAS  Google Scholar 

  35. C F Ramirez-Gutierrez, H D Martinez-Hernandez, I A Lujan-Cabrera and M E Rodriguez-García Sci. Rep. 9 1 (2019)

    Article  CAS  Google Scholar 

  36. F Segovia-Chaves and H Vinck-Posada Optik. 170 384 (2018)

    Article  ADS  CAS  Google Scholar 

  37. F Wu, M Chen, Z Chen and C Yin Opt. Commun. 490 126898 (2021)

    Article  CAS  Google Scholar 

  38. F Wu, G Lu, Z Guo, H Jiang, C Xue, M Zheng, C Chen, G Du and H Chen Phys. Rev. Appl. 10 064022 (2018)

    Article  ADS  CAS  Google Scholar 

  39. Y Kang and H Liu Superlattices Microstruct. 114 355 (2018)

    Article  ADS  CAS  Google Scholar 

  40. R W Boyd Nonlinear Optics (London: Academic) (1992)

    Google Scholar 

  41. A Lakhtakia, B Michel and W S Weiglhofer J. Phys. D: Appl. Phys. 30 230 (1997)

    Article  ADS  CAS  Google Scholar 

  42. D Berreman J. Opt. Soc. Am. 62 502 (1972)

    Article  ADS  CAS  Google Scholar 

  43. A Lakhtakia and W S Weiglhofer Proc. R. Soc. Lond. A 453 93 (1997)

    Article  ADS  CAS  Google Scholar 

  44. N Marcuvitz and J I Schwinger J. Appl. Phys. 22 806 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  45. D Berreman JOSA. 63 1374 (1973)

    Article  ADS  CAS  Google Scholar 

  46. I Abdulhalim J. Opt. A: Pure Appl. Opt. 1 646 (1999)

    Article  ADS  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work. No funding was received to assist with the preparation of this manuscript. No funding was received for conducting this study. No funds, grants, or other support were received.

Author information

Authors and Affiliations

Authors

Contributions

Category 1 Conception and design of the study: AM, SRE; acquisition of data: SS; analysis and/or interpretation of data: SRE, AM, SS. Category 2 drafting the manuscript: SS; revising the manuscript critically for important intellectual content: AM, S.RE. Category 3 Approval of the version of the manuscript to be published (the names of all authors must be listed): SS, AM, SRE.

Corresponding author

Correspondence to Amir Madani.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no conflicts of interest to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirin, S., Madani, A. & Roshan Entezar, S. Electrically tunable optical properties of one-dimensional photonic crystal containing nanocomposite structurally chiral material. Indian J Phys 98, 1463–1470 (2024). https://doi.org/10.1007/s12648-023-02888-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02888-5

Keywords

Navigation