Skip to main content
Log in

Numerical study for forced MHD convection heat transfer of a nanofluid in a square cavity with a cylinder of constant heat flux

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this research, flow and forced convection heat transfer of a water-copper nanofluid in the presence of magnetic field is studied. The walls of the square ventilation cavity are insulated. The dominating equations are solved by implementing the finite-volume method (FVM) using the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm. The effects of Hartmann number, nanoparticles volume fraction and Reynolds number on the flow and heat transfer characteristics were examined. The results demonstrate that increasing Reynolds and Hartmann numbers lead to increase the average Nusselt number. By evaluating the geometrical parameters, it was found that the size and number of vortices in the flow field decrease by increasing the inlet width. Besides, the increase of the average Nusselt number occurs with the increase of the inlet width. Moreover, it has been observed that the effect of the Hartmann number is more pronounced for higher Reynolds numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.E. Kabeel, Emad M.S. El-Said, S.A. Dafea, Renew. Sustain. Energy Rev. 45, 830 (2015)

    Article  Google Scholar 

  2. Xiang-Qi Wang, Arun S. Mujumdar, Int. J. Therm. Sci. 46, 19 (2007)

    Google Scholar 

  3. H. Heidary, R. Hosseini, M. Pirmohammadi, M.J. Kermani, J. Magn. & Magn. Mater. 374, 11 (2015)

    Article  ADS  Google Scholar 

  4. R. Saidur, K.Y. Leong, H.A. Mohammad, Renew. Sustain. Energy Revi. 15, 1646 (2011)

    Article  Google Scholar 

  5. L.Th. Benos, S.C. Kakarantzas, I.E. Sarris, A.P. Grecos, N.S. Vlachos, Int. J. Heat Mass Transfer 75, 19 (2014)

    Article  Google Scholar 

  6. Fatih Selimefendigil, Hakan F. Öztop, Int. J. Heat Mass Transfer 78, 741 (2014)

    Article  Google Scholar 

  7. B. Pekmen, M. Tezer-Sezgin, Int. J. Heat Mass Transfer 71, 172 (2014)

    Article  Google Scholar 

  8. M.M. Rahman, Hakan F. Öztop, R. Saidur, S. Mekhilef, Khaled Al-Salem, Comp. Fluids 79, 53 (2013)

    Article  Google Scholar 

  9. Xiao-Hong Luo, Ben-Wen Li, Zhang-Mao Hu, Int. J. Heat Mass Transfer 92, 449 (2016)

    Article  Google Scholar 

  10. Fatih Selimefendigil, Hakan F. Öztop, Int. J. Mech. Sci. 118, 113 (2016)

    Article  Google Scholar 

  11. A. Kasaeipoor, B. Ghasemi, S.M. Aminossadati, Int. J. Therm. Sci. 94, 50 (2015)

    Article  Google Scholar 

  12. Mohsen Sheikholeslami Kandelousi, Eur. Phys. J. Plus 129, 248 (2014)

    Article  Google Scholar 

  13. Fatih Selimefendigil, Hakan F. Öztop, Nidal Abu-Hamdeh, Int. Commun. Heat Mass Transf. 71, 9 (2016)

    Article  Google Scholar 

  14. M. Sheikholeslami, M.M. Bhatti, Int. J. Heat Mass Transfer 111, 139 (2017)

    Article  Google Scholar 

  15. R. Azizian, E. Doroodchi, T. McKrell, J. Buongiorno, L.W. Hu, B. Moghtaderi, Int. J. Heat Mass Transfer 68, 94 (2014)

    Article  Google Scholar 

  16. Mohsen Sheikholeslami, Mohadeseh Seyednezhad, Int. J. Heat Mass Transfer 120, 772 (2018)

    Article  Google Scholar 

  17. M. Sheikholeslami, J. Mol. Liq. 249, 1212 (2018)

    Article  Google Scholar 

  18. Mohsen Sheikholeslami, J. Mol. Liq. 249, 921 (2018)

    Article  Google Scholar 

  19. M. Sheikholeslami, Houman B. Rokni, Int. J. Heat Mass Transfer 118, 823 (2018)

    Article  Google Scholar 

  20. M. Sheikholeslami, J. Mol. Liq. 249, 739 (2018)

    Article  Google Scholar 

  21. Fatih Selimefendigil, Hakan F. Öztop, Int. J. Heat Mass Transfer 108, 156 (2017)

    Article  Google Scholar 

  22. Fatih Selimefendigil, Hakan F. Öztop, J. Taiwan Inst. Chem. Eng. 45, 2150 (2014)

    Article  Google Scholar 

  23. Fatih Selimefendigil, Hakan F. Öztop, Int. J. Heat Mass Transfer 98, 40 (2016)

    Article  Google Scholar 

  24. E. Abu-Nada, Z. Masoud, A. Hijazi, Int. Commun. Heat Mass Transf. 35, 657 (2008)

    Article  Google Scholar 

  25. I.E. Sarris, G.K. Zikos, A.P. Grecos, N.S. Vlachos, Numeri. Heat Transf. B 50, 157 (2006)

    Article  ADS  Google Scholar 

  26. Khalil Khanafer, Kambiz Vafai, Marilyn Lightstone, Int. J. Heat Mass Transfer 19, 3639 (2003)

    Article  Google Scholar 

  27. Eiyad Abu-Nada, Ziyad Masoud, Hakan F. Oztop, Antonio Campo, Int. J. Therm. Sci. 49, 479 (2010)

    Article  Google Scholar 

  28. H.C. Brinkman, J. Chem. Phy. 20, 571 (1952)

    Article  ADS  Google Scholar 

  29. L.H. Back, Int. J. Heat Mass Transfer 11, 1621 (1968)

    Article  Google Scholar 

  30. S.M. Aminossadati, A. Raisi, B. Ghasemi, Int. J. Non-Linear Mech. 46, 1373 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sheikholeslami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanpour, A., Ranjbar, A.A. & Sheikholeslami, M. Numerical study for forced MHD convection heat transfer of a nanofluid in a square cavity with a cylinder of constant heat flux. Eur. Phys. J. Plus 133, 66 (2018). https://doi.org/10.1140/epjp/i2018-11893-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11893-3

Navigation