Skip to main content
Log in

Influence of non-integer order parameter and Hartmann number on the heat and mass transfer flow of a Jeffery fluid over an oscillating vertical plate via Caputo-Fabrizio time fractional derivatives

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this work, semi analytical solutions for the heat and mass transfer of a fractional MHD Jeffery fluid over an infinite oscillating vertical plate with exponentially heating and constant mass diffusion via the Caputo-Fabrizio fractional derivative are obtained. The governing equations are transformed into dimensionless form by introducing dimensionless variables. A modern definition of the Caputo-Fabrizio derivative has been used to develop the fractional model for a Jeffery fluid. The expressions for temperature, concentration and velocity fields are obtained in the Laplace transformed domain. We have used the Stehfest’s and Tzou’s algorithm for the inverse Laplace transform to obtain the semi analytical solutions for temperature, concentration and velocity fields. In the end, in order to check the physical impact of flow parameters on temperature, concentration and velocity fields, results are presented graphically and in tabular forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Dalir, M. Dehsara, S.S. Nourazar, Energy 79, 351 (2015)

    Article  Google Scholar 

  2. I. Khan, Z. Naturforsch. A 70, 397 (2015)

    Article  ADS  Google Scholar 

  3. A. Zeeshan, A. Majeed, Alex. Eng. J. 55, 2171 (2016)

    Article  Google Scholar 

  4. M.M. Bhatti, A. Zeeshan, Mod. Phys. Lett. B 30, 1650196 (2016)

    Article  ADS  Google Scholar 

  5. M. Pourabdian, M. Qate, M.R. Morad, A. Javareshkian, The Jeffery-Hamel flow and heat transfer of nanofluids by homotopy perturbation method and Comparison with Numerical Results, arXiv:1601.05298 (2016)

  6. N.A.M. Zin, I. Khan, S. Shafie, Math. Probl. Eng., https://doi.org/10.1155/2016/6257071 (2016)

  7. M. Kothandapani, J. Prakash, Appl. Nanosci. 6, 323 (2016)

    Article  ADS  Google Scholar 

  8. R. Ellahi, M.M. Bhatti, I. Pop, Int. J. Numer. Methods Heat Fluid Flow 26, 1802 (2016)

    Article  Google Scholar 

  9. S.A. Gaffar, V.R. Prasad, E.K. Reddy, AIN Shams Eng. J., https://doi.org/10.1016/j.asej.2016.09.003 (2016)

  10. M.M. Rashidi, M. Nasiri, M. Khezerloo, N. Laraqi, J. Magn. & Magn. Mater. 93, 674 (2016)

    Google Scholar 

  11. O. Anwar Bég, M.J. Uddin, M.M. Rashidi, N. Kavyani, J. Eng. Thermophys. 23, 79 (2014)

    Article  Google Scholar 

  12. A. Basiri Parsa, M.M. Rashidi, O. Anwar Bég, S.M. Sadri, Comput. Biol. Med. 43, 1142 (2013)

    Article  Google Scholar 

  13. S. Abbasbandy, T. Hayat, A. Alsaedi, M.M. Rashidi, Int. J. Numer. Methods Heat Fluid Flow 24, 390 (2014)

    Article  Google Scholar 

  14. F. Mabood, S.M. Ibrahim, M.M. Rashidi, M.S. Shadloo, G. Lorenzini, Int. J. Heat Mass Transfer 93, 674 (2016)

    Article  Google Scholar 

  15. M.M. Rashidi, N. Laraqi, A. Basiri Parsa, Heat Transf. Asian Res. 40, 187 (2011)

    Article  Google Scholar 

  16. J. Mohanty, J.K. Das, S.R. Mishra, Model. Meas. Control Ser. B 83, 1 (2014)

    Google Scholar 

  17. J. Ahmed, A. Shahzad, M. Khan, R. Ali, AIP Adv. 5, 117 (2015)

    Google Scholar 

  18. T. Hayat, R. Sajjad, S. Asghar, Commun. Nonlinear Sci. Numer. Simul. 15, 2400 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  19. K. Das, N. Acharya, P.K. Kundu, Alex. Eng. J. 54, 815 (2015)

    Article  Google Scholar 

  20. K. Maqbool, A.B. Mann, M.H. Tiwana, Alex. Eng. J., https://doi.org/10.1016/j.aej.2017.02.012 (2017)

  21. S. Jena1, S.R. Mishra, G.C. Dash, Int. J. Appl. Comput. Math., https://doi.org/10.1007/s40819-016-0173-8 (2016)

  22. M. Imtiaz, T. Hayat, A. Alsaedi, PLoS ONE, https://doi.org/10.1371/journal.pone.0161641 (2016)

  23. K. Ahmad, A. Ishak, Malays. J. Math. Sci. 10, 311 (2016)

    MathSciNet  Google Scholar 

  24. N. Shahid, Springer Plus 4, 640 (2015)

    Article  Google Scholar 

  25. D. Vieru, C. Fetecau, C. Fetecau, Therm. Sci. 19, S85 (2015)

    Article  Google Scholar 

  26. I. Khan, N.A. Shah, D. Vieru, Eur. Phys. J. Plus 131, 181 (2016)

    Article  Google Scholar 

  27. F. Ali, S.A.A. Jan, I. Khan, M. Gohar, N.A. Sheikh, Eur. Phys. J. Plus 131, 310 (2016)

    Article  Google Scholar 

  28. M.A. Imran, I. Khan, M. Ahmad, N.A. Shah, M. Nazar, J. Mol. Liq., https://doi.org/10.1016/j.molliq.2016.11.095 (2017)

  29. M.A. Imran, N.A. Shah, I. Khan, Maryam Aleem, Neural Comput. Appl., https://doi.org/10.1007/s00521-016-2741-6 (2017)

  30. M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)

    Google Scholar 

  31. M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 2, 1 (2016)

    Article  Google Scholar 

  32. A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)

    Article  Google Scholar 

  33. N.A. Shah, I. Khan, Eur. Phys. J. C, https://doi.org/10.1140/epjc/s/0052-016-4209-3 (2016)

  34. A.A. Zafar, C. Fetecau, Alex. Eng. J., https://doi.org/10.1016/J.aej/2016.07.022 (2016)

  35. M.A. Imran, N.A. Shah, Maryam Aleem, I. Khan, Eur. Phys. J. Plus 132, 340 (2017)

    Article  Google Scholar 

  36. M. Saqib, F. Ali, I. Khan, N.A. Shiekh, S.A. Jan, S. Haq, Alex. Eng. J., https://doi.org/10.1016/j.aej.2017.03.017 (2017)

  37. M. Abdullah, N. Raza, A.R. Butt, E.U. Haque, Can. J. Phys. 95, 472 (2017)

    Article  ADS  Google Scholar 

  38. N. Raza, M. Abdullah, A.R. Butt, A.U. Awan, E.U. Haque, Alex. Eng. J., https://doi.org/10.1016/j.aej.2017.04.004 (2017)

  39. M. Tahir, M.A. Imran, N. Raza, M. Abdullah, Results Phys. 7, 1887 (2017)

    Article  ADS  Google Scholar 

  40. H. Sheng, Y. Li, Y.Q. Chen, J. Franklin Inst. 348, 317 (2011)

    Article  Google Scholar 

  41. D.K. Tong, X.M. Zhang, X.H. Zhang, J. Non-Newtonian Fluid Mech. 156, 75 (2009)

    Article  Google Scholar 

  42. Y. Jiang, H. Qi, H. Xu, X. Jiang, J. Non-Newtonian Fluid Mech. 21, 7 (2017)

    Google Scholar 

  43. H. Stehfest, Commun. ACM 13, 47 (1970)

    Article  Google Scholar 

  44. D.Y. Tzou, Macro to Microscale Heat Transfer: The Lagging Behavior (Taylor and Francis, Washington, 1970)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butt, A.R., Abdullah, M., Raza, N. et al. Influence of non-integer order parameter and Hartmann number on the heat and mass transfer flow of a Jeffery fluid over an oscillating vertical plate via Caputo-Fabrizio time fractional derivatives. Eur. Phys. J. Plus 132, 414 (2017). https://doi.org/10.1140/epjp/i2017-11713-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11713-4

Navigation