Skip to main content
Log in

Quantification of free convection for embarked QFN64 electronic package: An experimental and numerical survey

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Embarked Quad Flat Non-lead (QFN) electronic devices are equipped with a significant number of sensors used for flight parameters measurement purposes. Their accuracy directly depends on the package thermal state. Flight safety therefore depends on the reliability of these QFNs, whose junction temperature must remain as low as possible while operating. The QFN64 is favored for these applications. In the operating power range considered here (0.01-0.1W), the study shows that radiative heat transfer is negligible with respect to natural convective exchanges. It is then essential to quantify the convective heat transfer coefficient on its different areas so that the arrangement is properly dimensioned. This is the objective of this work. The device is welded on a PCB which may be inclined with respect to the horizontal plane by an angle ranging from \(0^{\circ}\) to \(90^{\circ}\). Numerical approach results are confirmed by thermal and electrical measurements carried out on prototypes for all power-inclination angle combinations. The correlations here proposed help determine the natural convective heat transfer coefficient in any area of the assembly. This work allowed to thermally characterize and certify a new QFN64 package equipped with sensors designed for aeronautics, currently under industrialization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sohail, A. Samiulhaq, D. Vieru, Eur. Phys. J. Plus 129, 28 (2014)

    Article  Google Scholar 

  2. M.M. Rashidi, H. Shahmohamadi, Commun. Nonlinear Sci. Numer. Simul. 14, 2999 (2009)

    Article  ADS  Google Scholar 

  3. M. Guedda, M. Sriti, D. Achemlal, Eur. Phys. J. Plus 129, 170 (2014)

    Article  Google Scholar 

  4. H.F. Öztop, K. Al-Salem, Y. Varol, I. Pop, M. Firat, Int. J. Numer. Methods Heat Fluid Flow 22, 1053 (2012)

    Article  Google Scholar 

  5. E. Abu-Nada, Int. Commun. Heat Mass Transf. 69, 84 (2015)

    Article  Google Scholar 

  6. T. Basak, R.S. Kaluri, A.R. Balakrishnan, Numer. Heat Transf. A 62, 336 (2012)

    Article  ADS  Google Scholar 

  7. A. Bairi, J.M. García de María, Int. J. Heat Mass Transfer 66, 355 (2013)

    Article  Google Scholar 

  8. M. Darzi, M. Vatani M., S.E. Ghasemi, D.D. Ganji, Eur. Phys. J. Plus 130, 100 (2015)

    Article  Google Scholar 

  9. Y. Varol, H.F. Oztop, A. Varol, Int. Commun. Heat Mass Transf. 34, 19 (2007)

    Article  Google Scholar 

  10. M. Sheikholeslami, M. Gorji-Bandpy, D.D. Ganji, Eur. Phys. J. Plus 130, 225 (2015)

    Article  Google Scholar 

  11. M.A. Sheremet, I. Pop, Eur. Phys. J. Plus 130, 107 (2015)

    Article  Google Scholar 

  12. A. Bairi, Appl. Therm. Eng. 28, 1267 (2008)

    Article  Google Scholar 

  13. R. Kandasamy, S. Subramanyam, Int. J. Numer. Methods Heat Fluid Flow 15, 61 (2005)

    Article  Google Scholar 

  14. A. Bairi, Int. Commun. Heat Mass Transf. 72, 94 (2016)

    Article  Google Scholar 

  15. Integrated Circuits Thermal Test Method Environmental Conditions-Natural Convection, Jedec Solid State Tech. Association, JESD51-2A (2008)

  16. QFN (Quad Flat Pack No-Lead), Freescale Semiconductor Application Note, Document Number: AN4530 Rev 0, 5/2012

  17. Atmel 8826A-SEEPROM-PCB, Mounting Guidelines Surface Mount Packages

  18. A. Bairi, Microelectron. Reliabil. 74, 67 (2017)

    Article  Google Scholar 

  19. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, edited by W.J. Minkowycz, E. Sparrows (Taylor and Francis Publishers, 1980)

  20. H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method (Pearson Education Limited, 1995)

  21. A. Bairi, Microelectron. Reliabil. 66, 85 (2016)

    Article  Google Scholar 

  22. www.hotdiskinstruments.com/products/instruments-for-thermal-conductivity-measurements/tps-2500-s.html, Hot Disk TPS 2500S

  23. M. Gustavsson, H. Nagai, T. Okutani, Solid State Phenom. 124-126, 1641 (2007)

    Article  Google Scholar 

  24. Q.C. Wang, Z.C. Wu, X.P. Zhu, Int. J. Numer. Methods Heat Fluid Flow 25, 25 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baïri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baïri, A. Quantification of free convection for embarked QFN64 electronic package: An experimental and numerical survey. Eur. Phys. J. Plus 132, 343 (2017). https://doi.org/10.1140/epjp/i2017-11615-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11615-5

Navigation