Skip to main content
Log in

A meshless technique based on the pseudospectral radial basis functions method for solving the two-dimensional hyperbolic telegraph equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, the pseudospectral radial basis functions method is proposed for solving the second-order two-space-dimensional telegraph equation in regular and irregular domain. The proposed numerical method, which is truly meshless, is based on a time stepping procedure to deal with the temporal part of the solution combined with radial basis function differentiation matrices for discretizing the spatial derivatives. Here, we extended the pseudospectral radial basis functions method for two-dimensional hyperbolic telegraph equations in irregular domain. A cross-validation technique is used to optimize the shape parameter for the basis functions. Numerical results and comparisons are given to validate the presented method for solving the two-dimensional telegraph equation on both regular and irregular domains which show that the approximate solutions are in good agreement with the exact solution. The obtained results showed that the proposed method is easy to apply for multidimensional problems and equally applicable to both the regular and irregular domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Jiwari, S. Pandit, R.C. Mittal, Appl. Math. Comput. 218, 7279 (2012)

    MathSciNet  Google Scholar 

  2. R.C. Mittal, R. Bhatia, Appl. Math. Comput. 244, 976 (2014)

    MathSciNet  Google Scholar 

  3. M. Dehghan, A. Ghesmati, Eng. Anal. Bound. Elem. 34, 324 (2010)

    Article  MathSciNet  Google Scholar 

  4. S. Abbasbandy, H. Roohani Ghehsareh, I. Hashim, A. Alsaedi, Eng. Anal. Bound. Elem. 47, 10 (2014)

    Article  MathSciNet  Google Scholar 

  5. M. Dehghan, A. Shokri, Numer. Methods Partial Differ. Eq. 24, 1080 (2008)

    Article  Google Scholar 

  6. A. Saadatmandi, M. Dehghan, Numer. Methods Partial Differ. Eq. 26, 239 (2010)

    Article  Google Scholar 

  7. M. Dehghan, A. Ghesmati, Eng. Anal. Bound. Elem. 34, 51 (2010)

    Article  MathSciNet  Google Scholar 

  8. V.R. Hosseini, E. Shivanian, W. Chen, Eur. Phys. J. Plus 130, 33 (2015)

    Article  Google Scholar 

  9. J. Lin, W. Chen, C.S. Chen, Appl. Math. Model. 38, 5651 (2014)

    Article  MathSciNet  Google Scholar 

  10. R.K. Mohanty, M.K. Jain, U. Arora, Int. J. Comput. Math. 79, 133 (2002)

    Article  MathSciNet  Google Scholar 

  11. R.K. Mohanty, M.K. Jain, Numer. Methods Partial Differ. Eq. 7, 684 (2001)

    Article  Google Scholar 

  12. M. Dehghan, A. Shokri, Numer. Methods Partial Differ. Eq. 25, 494 (2009)

    Article  Google Scholar 

  13. M. Dehghan, A. Mohebbi, Numer. Methods Partial Differ. Eq. 25, 232 (2009)

    Article  Google Scholar 

  14. D.L. Young, M.H. Gu, C.M. Fan, Eng. Anal. Bound. Elem. 33, 1411 (2009)

    Article  MathSciNet  Google Scholar 

  15. M.G. Reuter, J.C. Hill, R.J. Harrison, Comput. Phys. Commun. 183, 1 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  16. S. Abbasbandy, H. Roohani Ghehsareh, I. Hashim, Eng. Anal. Bound. Elem. 36, 1811 (2012)

    Article  MathSciNet  Google Scholar 

  17. S. Abbasbandy, H. Roohani Ghehsareh, I. Hashim, Eng. Anal. Bound. Elem. 37, 885 (2013)

    Article  MathSciNet  Google Scholar 

  18. K. Parand, S. Abbasbandy, S. Kazem, A.R. Rezaei, Commun. Nonlinear Sci. Numer. Simul. 16, 1396 (2011)

    Article  ADS  Google Scholar 

  19. E.J. Kansa, R.C. Aldredge, L. Ling, Eng. Anal. Bound. Elem. 33, 940 (2009)

    Article  MathSciNet  Google Scholar 

  20. Y. Dereli, Numer. Methods Partial Differ. Eq. 28, 235 (2012)

    Article  MathSciNet  Google Scholar 

  21. E. Shivanian, Eng. Anal. Bound. Elem. 54, 1 (2015)

    Article  MathSciNet  Google Scholar 

  22. E. Shivanian, Ocean Eng. 89, 173 (2014)

    Article  Google Scholar 

  23. H.R. Ghehsareh, S.H. Bateni, A. Zaghian, Eng. Anal. Bound. Elem. 61, 52 (2015)

    Article  MathSciNet  Google Scholar 

  24. B. Azarnavid, K. Parand, Imposing various boundary conditions on radial basis functions, arXiv:1611.07292 (2016)

  25. E. Larsson, E. Lehto, A. Heryudono, B. Fornberg, SIAM J. Sci. Comput. 35, A2096 (2013)

    Article  Google Scholar 

  26. E. Larsson, B. Fornberg, Comput. Math. Appl. 46, 891 (2003)

    Article  MathSciNet  Google Scholar 

  27. W. Chen, Z.J. Fu, C.S. Chen, Recent Advances in Radial Basis Function Collocation Methods (Springer, Heidelberg, 2014)

  28. G.E. Fasshauer, Bound. Elem. XVII, 47 (2005)

    MathSciNet  Google Scholar 

  29. S.A. Sarra, Appl. Numer. Math. 54, 79 (2005)

    Article  MathSciNet  Google Scholar 

  30. A.J.M. Ferreira, G.E. Fasshauer, Int. J. Comput. Methods Eng. Sci. Mech. 8, 323 (2007)

    Article  Google Scholar 

  31. M. Uddin, Appl. Math. Comput. 222, 619 (2013)

    MathSciNet  Google Scholar 

  32. G.E. Fasshauer, J.G. Zhang, Numer. Algorithms 45, 345 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  33. A.J.M. Ferreira, G.E. Fasshauer, Comput. Methods Appl. Mech. Eng. 196, 134 (2006)

    Article  ADS  Google Scholar 

  34. M. Uddin, S. Ali, Math. Sci. Lett. 2, 55 (2012)

    Article  Google Scholar 

  35. M. Uddin, R.J. Ali, Appl. Math. Inf. Sci. 1, 9 (2012)

    Google Scholar 

  36. J. Lin, Y. Hong, L.H. Kuo, C.S. Liu, Eng. Anal. Bound. Elem. 78, 20 (2017)

    Article  MathSciNet  Google Scholar 

  37. S. Rippa, Adv. Comput. Math. 11, 193 (1999)

    Article  MathSciNet  Google Scholar 

  38. H. Wendland, Scattered Data Approximation, Vol. 17 (Cambridge University Press, 2004)

  39. R. Schaback, SIAM J. Numer. Anal. 45, 333 (2007)

    Article  MathSciNet  Google Scholar 

  40. L.N. Trefethen, Spectral Methods in MATLAB, Vol. 10 (SIAM, 2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Emamjome.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostamy, D., Emamjome, M. & Abbasbandy, S. A meshless technique based on the pseudospectral radial basis functions method for solving the two-dimensional hyperbolic telegraph equation. Eur. Phys. J. Plus 132, 263 (2017). https://doi.org/10.1140/epjp/i2017-11529-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11529-2

Navigation