Skip to main content
Log in

Managing optical bistability and multistability by embedding quantum dot nanostructures in a photonic crystal

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The optical bistability and multistability properties are studied in a defect slab doped with acceptor and donor quantum dots embedded in a nonlinear photonic crystal. It is shown that the intensity threshold of optical bistability can be controlled via the corresponding controllable parameters, such as Rabi frequency of coupling field and the thickness of the slab. It is found that the switching from optical bistability to multistability can be obtained by enhancing the Rabi frequency of the coupling field. Moreover, it is observed that the dipole-dipole interaction between acceptor and donor quantum dots can lead to modifying the behaviors of optical bistability and multistability. Also, it is demonstrated that the optical thickness of the slab can be used as a potential parameter to control the intensity threshold of optical bistability and multistability. It is found that, by decreasing or increasing the optical thickness parameter, the threshold of optical bistability or multistability can be decreased or increased, correspondingly. We hope that our proposed model can be used for developing the future all-optical systems based on photonic materials doped with nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wu, J. Saldana, Y. Zhu, Phys. Rev. A 67, 013811 (2003)

    Article  ADS  Google Scholar 

  2. Y. Wu, X. Yang, Phys. Rev. A 71, 053806 (2005)

    Article  ADS  Google Scholar 

  3. Y. Wu, X. Yang, Appl. Phys. Lett. 91, 094104 (2007)

    Article  ADS  Google Scholar 

  4. W.-X. Yang, W.-H. Ma, L. Yang, G.-R. Zhang, R.-K. Lee, Opt. Commun. 324, 221 (2014)

    Article  ADS  Google Scholar 

  5. W.-X. Yang, S. Liu, Z. Zhu, R.-K. Lee, Opt. Lett. 40, 3133 (2015)

    Article  ADS  Google Scholar 

  6. K.I. Osman, S.S. Hassan, A. Joshi, Opt. Commun. 278, 114 (2007)

    Article  ADS  Google Scholar 

  7. S.G. Kosionis, A.F. Terzis, E. Paspalakis, J. Appl. Phys. 112, 073117 (2012)

    Article  ADS  Google Scholar 

  8. S.-C. Tian, R.-G. Wan, X.-N. Shan, C.-Z. Tong, L. Qin, Y.-Q. Ning, Opt. Commun. 356, 155 (2015)

    Article  ADS  Google Scholar 

  9. C.-L. Wang, Y.-L. Meng, Opt. Commun. 285, 2632 (2012)

    Article  ADS  Google Scholar 

  10. Z. Wang, B. Yu, F. Xu, S. Zhen, X. Wu, J. Zhu et al., Physica E 44, 1267 (2012)

    Article  ADS  Google Scholar 

  11. A.A. Koser, P. Sen, P.K. Sen, Superlattices Microstruct. 46, 656 (2009)

    Article  ADS  Google Scholar 

  12. J.-F. Ai, A.-X. Chen, L. Deng, Chin. Phys. B 22, 024209 (2013)

    Article  ADS  Google Scholar 

  13. Z. Wang, Physica E 43, 1329 (2011)

    Article  ADS  Google Scholar 

  14. Z. Wang, Physica E 43, 1763 (2011)

    Article  ADS  Google Scholar 

  15. X. Hao, C. Ding, X.-Y. Lü, J. Li, X. Yang, Physica E 42, 1984 (2010)

    Article  ADS  Google Scholar 

  16. C. Ding, R. Yu, J. Li, X. Hao, X. Yang, J. Opt. Soc. Am. B 30, 3225 (2013)

    Article  ADS  Google Scholar 

  17. A. Joshi, A. Brown, H. Wang, M. Xiao, Phys. Rev. A 67, 041801(R) (2003)

    Article  ADS  Google Scholar 

  18. A. Joshi, M. Xiao, Appl. Phys. B 79, 65 (2004)

    Article  ADS  Google Scholar 

  19. J.-H. Li, X.-Y. Lü, J.-M. Luo, Q.-J. Huang, Phys. Rev. A 74, 035801 (2006)

    Article  ADS  Google Scholar 

  20. X.-m. Hu, J. Wang, Phys. Lett. A 365, 253 (2007)

    Article  ADS  Google Scholar 

  21. J.A. Klugkist, V.A. Malyshev, J. Knoester, J. Chem. Phys. 127, 164705 (2007)

    Article  ADS  Google Scholar 

  22. J.-H. Li, Phys. Rev. B 75, 155329 (2007)

    Article  ADS  Google Scholar 

  23. J. Wu, X.-Y. Lü, L.-L. Zheng, J. Phys. B 43, 161003 (2010)

    Article  ADS  Google Scholar 

  24. S.H. Asadpour, M. Jaberi, H.R. Soleimani, J. Opt. Soc. Am. B 30, 1815 (2013)

    Article  ADS  Google Scholar 

  25. S.-C. Tian, R.-G. Wan, C.-Z. Tong, Y.-Q. Ning, J. Opt. Soc. Am. B 31, 2681 (2014)

    Article  ADS  Google Scholar 

  26. A. Chen, Z. Wang, D. Chen, Sci. China Ser. G: Phys. Mech. Astron. 52, 524 (2009)

    Article  ADS  Google Scholar 

  27. Y. Chen, L. Deng, A. Chen, Ann. Phys. 353, 1 (2015)

    Article  ADS  Google Scholar 

  28. S. Hossein Asadpour, H. Rahimpour Soleimani, Opt. Commun. 315, 347 (2014)

    Article  ADS  Google Scholar 

  29. K.I. Osman, A. Joshi, Opt. Commun. 293, 86 (2013)

    Article  ADS  Google Scholar 

  30. Z. Wang, Opt. Commun. 282, 4745 (2009)

    Article  ADS  Google Scholar 

  31. Z. Wang, B. Yu, J. Appl. Phys. 113, 113101 (2013)

    Article  ADS  Google Scholar 

  32. Z. Wang, B. Yu, Superlattices Microstruct. 84, 45 (2015)

    Article  ADS  Google Scholar 

  33. S.H. Asadpour, H. Rahimpour Soleimani, Laser Phys. Lett. 13, 015201 (2016)

    Article  ADS  Google Scholar 

  34. S.H. Asadpour, G. Solookinejad, M. Panahi, E. Ahmadi Sangachin, Appl. Opt. 55, 722 (2016)

    Article  ADS  Google Scholar 

  35. M. Singh, Phys. Rev. A 75, 043809 (2007)

    Article  ADS  Google Scholar 

  36. M. Singh, Phys. Rev. A 75, 033810 (2007)

    Article  ADS  Google Scholar 

  37. M.R. Singh, J. Mod. Opt. 54, 1739 (2007)

    Article  ADS  Google Scholar 

  38. M.R. Singh, Phys. Rev. B 75, 155427 (2007)

    Article  ADS  Google Scholar 

  39. M.R. Singh, Phys. Lett. A 372, 5083 (2008)

    Article  ADS  Google Scholar 

  40. M.R. Singh, Phys. Rev. A 79, 013826 (2009)

    Article  ADS  Google Scholar 

  41. M.R. Singh, D.G. Schindel, A. Hatef, Appl. Phys. Lett. 99, 181106 (2011)

    Article  ADS  Google Scholar 

  42. J.D. Cox, M.R. Singh, G. Gumbs, M.A. Anton, F. Carreno, Phys. Rev. B 86, 125452 (2012)

    Article  ADS  Google Scholar 

  43. Z. Wang, B. Yu, Laser Phys. Lett. 11, 115903 (2014)

    Article  ADS  Google Scholar 

  44. Z. Wang, S. Zhen, B. Yu, Laser Phys. Lett. 12, 046004 (2015)

    Article  ADS  Google Scholar 

  45. M.R. Singh, C. Racknor, D. Schindel, Appl. Phys. Lett. 101, 051115 (2012)

    Article  ADS  Google Scholar 

  46. T. Naseri, S.H. Asadpour, R. Sadighi-Bonabi, J. Opt. Soc. Am. B 30, 641 (2013)

    Article  ADS  Google Scholar 

  47. Y. Liu, F. Qin, Z.Y. Wei, Q.B. Meng, D.Z. Zhang, Z.Y. Li, Appl. Phys. Lett. 95, 131116 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Hossein Asadpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossein Asadpour, S., Solookinejad, G., Panahi, M. et al. Managing optical bistability and multistability by embedding quantum dot nanostructures in a photonic crystal. Eur. Phys. J. Plus 131, 406 (2016). https://doi.org/10.1140/epjp/i2016-16406-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16406-x

Navigation